Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein biosynthesis in organelles requires misaminoacylation of tRNA

Abstract

In the course of our studies on transfer RNA involvement in chlorophyll biosynthesis1, we have determined the structure of chloroplast glutamate tRNA species. Barley chloroplasts contain in addition to a tRNAGlu species at least two other glutamate-accepting tRNAGlus. We now show that the sequences of these tRNAs differ significantly: they are differentially modified forms of tRNAGln (as judged by their UUG anticodon). These mischarged Glu-tRNAGln species can be converted in crude chloroplast extracts to Gln-tRNAGln. This reaction requires a specific amidotransferase and glutamine or asparagine as amide donors. Aminoacylation studies show that chloroplasts, plant and animal mitochondria, as well as cyanobacteria, lack any detectable glutaminyl-tRNA syn-thetase activity. Therefore, the requirement for glutamine in protein synthesis in these cells and organelles is provided by the conversion of glutamate attached to an 'incorrectly' charged tRNA. A similar situation has been described for several species of Gram-positive bacteria2. Thus, it appears that the occurrence of this pathway of Gln-tRNAGln formation is widespread among organisms and is a function conserved during evolution. These findings raise questions about the origin of organelles and about the evolution of the mechanisms maintaining accuracy in protein biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schön, A. et al. Nature 322, 281–284 (1986).

    Article  ADS  Google Scholar 

  2. Wilcox, M. & Nirenberg, M. Proc. natn. Acad. Sci. U.S.A. 61, 229–236 (1968).

    Article  ADS  CAS  Google Scholar 

  3. Sprinzl, M., Hartmann, T., Meissner, F., Moll, J. & Vorderwülbecke, T. Nucleic Acids Res. 15, r53–rl88 (1987).

    Article  CAS  Google Scholar 

  4. Ohyama, K. et al. Nature 322, 572–574 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Wilcox, M. Eur. J. Biochem. 11, 405–412 (1969).

    Article  CAS  Google Scholar 

  6. Lapointe, J., Duplain, L. & Proulx, M. J. Bact. 165, 88–93 (1986).

    Article  CAS  Google Scholar 

  7. Burkard, G., Guillemaut, P. & Weil, J. H. Biochim. biophys. Acta 224, 184–198 (1970).

    Article  CAS  Google Scholar 

  8. Mubumbila, M. et al. Biochim. biophys. Acta 609, 31–39 (1980).

    Article  CAS  Google Scholar 

  9. Louie, A., Ribeiro, S., Reid, B. R. & Jurnak, F. J. biol. Chem. 259, 5010–5016 (1984).

    CAS  PubMed  Google Scholar 

  10. Srivastava, D. K. & Bernhard, S. A. Science 234, 1081–1086 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Grumont, R., Washtien, W. L., Caput, D. & Santi, D. Proc. natn. Acad. Sci. U.S.A. 83, 5387–5391 (1986).

    Article  ADS  CAS  Google Scholar 

  12. White, B. N. & Bayley, S. T. Can. J. Biochem. 50, 601–609 (1971).

    Google Scholar 

  13. Gupta, R. J. biol. Chem. 259, 9461–9471 (1985).

    Google Scholar 

  14. Martin, N. C., Rabinowitz, M. & Fukuhara, H. J. molec. Biol. 101, 285–296 (1976).

    Article  CAS  Google Scholar 

  15. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Proc. natn. Acad. Sci. U.S.A. 82, 4443–4447 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Woese, C. R. Microbiol. Rev. 61, 221–227 (1987).

    Article  Google Scholar 

  17. Gray, M. W., Sankoff, D. & Cedergren, R. J. Nucleic Acids Res. 12, 5837–5852 (1984).

    Article  CAS  Google Scholar 

  18. Kannangara, C. G., Gough, S. P., Oliver, R. P. & Rasmussen, S. K. Carlsberg Res. Commun. 49, 417–437 (1984).

    Article  CAS  Google Scholar 

  19. Krupp, G. & Gross, H. J. in The Modified Nucleosides in Transfer RNA II: A Laboratory Manual of Genetic Analysis, Identification and Sequence Determination (eds Agris, P. F. & Kopper, R. A.) 11–58 (Liss, New York, 1983).

    Google Scholar 

  20. Peattie, D. Proc. natn. Acad. Sci. U.S.A. 76, 1760–1764 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Stanley, J. & Vassilenko, S. Nature 274, 87–89 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Nishimura, S. in Transfer RNA: Structure, Properties and Recognition. (eds Schimmel, P., Söll, D. & Abelson, J. N.) 551–552 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1979).

    Google Scholar 

  23. von Arx, E. & Neher, R. J. Chromatogr. 12, 329–341 (1963).

    Article  CAS  Google Scholar 

  24. Höinghaus, R. & Feierabend, J. Protoplasma 118, 114–120 (1983).

    Article  Google Scholar 

  25. Jackson, D., Dench, J. E., Hall, D. O. & Moore, A. L. Pl. Physiol. 64, 150–153 (1979).

    Article  CAS  Google Scholar 

  26. Ledwith, B. J., Manam, S. & Van Tuyle, G. C. J. biol. Chem. 261, 6571–6577 (1986).

    CAS  PubMed  Google Scholar 

  27. Roe, B. A. Nucleic Acids Res. 2, 21–42 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, A., Kannangara, C., Cough, S. et al. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature 331, 187–190 (1988). https://doi.org/10.1038/331187a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331187a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing