Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine

Abstract

The biological requirement of the trace element selenium was recognized 40 years ago1. Selenium is incorporated into several enzymes and transfer RNA species of both prokaryotic and eukaryotic origin2. In enzymes which contain a selenopolypeptide, selenium is present as covalently bound selenocysteine which participates in the catalytic reaction3. Sequence analysis of the genes coding for two selenoproteins, formate dehydrogenase H from Escherichia coli4 and glutathione peroxidase from mouse5 and man6, demonstrated that an inframe UGA opal nonsense codon directs the incorporation of selenocysteine. In the case of formate dehydrogenase incorporation occurs cotranslationally7. Recently, we identified four genes whose products are required for selenocysteine incorporation in E. coli8 . We report here that one of these genes codes for a tRNA species with unique properties. It possesses an anticodon complementary to UGA and deviates in several positions from sequences, until now, considered invariant in all tRNA species9'10. This tRNA is aminoacylated with L-serine by the seryl-tRNA ligase which also charges cognate tRNASer. Selenocysteine, therefore, is synthesized from a serine residue bound to a natural suppressor tRNA which recognizes UGA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pinsent, J. Biochem. J. 57, 10–16 (1954).

    Article  CAS  Google Scholar 

  2. Stadtman, T. C. A. Rev. Biochem. 49, 93–110 (1980).

    Article  CAS  Google Scholar 

  3. Condell, R. A. & Tappel, A. L. Biochim. biophys. Acta 709, 304–309 (1982).

    Article  CAS  Google Scholar 

  4. Zinoni, F., Birkman, A., Stadtman, T. C. & Böck, A. Proc. natn. Acad. Sci. U.S.A. 83, 4650–4654 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Chambers, I. et al. EMBO J. 5, 1221–1227 (1986).

    Article  CAS  Google Scholar 

  6. Sukenaga, Y., Ishida, K., Takeda, T. & Takagi, K. Nucleic Acids Res. 15, 7178 (1987).

    Article  CAS  Google Scholar 

  7. Zinoni, F., Birkmann, A., Leinfelder, W. & Böck, A. Proc. natn. Acad. Sci. U.S.A. 84, 3156–3160 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Leinfelder, W. et al. J. Bact. (in the press).

  9. Sprinzl, M., Moll, J., Meissner, F. & Hartmann, T. Nucleic Acids Res. 13, r1–r49 (1985).

    Article  Google Scholar 

  10. Sprinzl, M., Vorderwülbecke, T. & Hartmann, T. Nucleic Acids Res. 13, r51–rl04 (1985).

    Article  Google Scholar 

  11. Cox, J. C., Edwards, E. S. & DeMoss, J. A. J. Bact. 145, 1317–1324 (1981).

    CAS  PubMed  Google Scholar 

  12. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  13. Gray, C. P., Sommer, R., Beck, E. & Schaller, H. Proc. natn. Acad. Sci. U.S.A. 75, 50–53 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Ryan, M. J., Belagaje, R., Brown, E. L., Fritz, H.-J. & Khorana, H. G. J. molec. Biol. 254, 10803–10810 (1979).

    CAS  Google Scholar 

  15. Prentki, P. & Krisch, H. M. Gene 29, 303–313 (1984).

    Article  CAS  Google Scholar 

  16. Pouwels, P. H., Enger-Valk, B. E. & Brammar, W. J. Cloning vectors (Elsevier, Amsterdam, 1986).

    Google Scholar 

  17. Raftery, L. A. & Yarus, M. EMBO J. 6, 1499–1506 (1987).

    Article  CAS  Google Scholar 

  18. Low, B., Gates, F., Goldstein, T. & Söll, D. J. Bact. 108, 742–750 (1971).

    CAS  PubMed  Google Scholar 

  19. Hatfield, D., Diamond, A. & Dudock, B. Proc. natn. Acad. Sci. U.S.A. 79, 6215–6219 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Hatfield, D. Trends biochem. Sci. 10, 201–204 (1985).

    Article  CAS  Google Scholar 

  21. Mizutani, T. & Tachibana, Y. FEBS Lett. 207, 162–166 (1986).

    Article  CAS  Google Scholar 

  22. Sunde, R. A. & Evenson, J. K. J. biol. Chem. 262, 933–937 (1987).

    CAS  PubMed  Google Scholar 

  23. Buckel, P., Piepersberg, W. & Böck, A. Molec. gen. Genet. 149, 51–61 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinfelder, W., Zehelein, E., MandrandBerthelot, M. et al. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331, 723–725 (1988). https://doi.org/10.1038/331723a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331723a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing