Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of a retroviral protease proves relationship to aspartic protease family

Abstract

Retroviral gag, pol and env gene products are translated as precursor polyproteins, which are cleaved by virus-encoded proteases to produce the mature proteins found in virions1–11. On the basis of the conserved Asp—Thr/Ser—Gly sequence at the putative protease active sites, and other biochemical evidence2,3,12–16, retroviral proteases have been predicted to be in the family of pepsin-like aspartic proteases. It has been suggested that aspartic proteases evolved from a smaller, dimeric ancestral protein17, and a recent model of the human immunodeficiency virus (HIV) protease postulated that a symmetric dimer of this enzyme is equivalent to a pepsin-like aspartic protease18. We have now determined the crystal structure of Rous sarcoma virus (RSV) protease at 3-Å resolution and find it is dimeric and has a structure similar to aspartic proteases19–22. This structure should provide a useful basis for the modelling of the structures of other retroviral proteases, such as that of HIV, and also for the rational design of protease inhibitors as potential antiviral drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dickson, C., Eisenman, R., Fan, H., Hunter, E. & Teich, N. in RNA Tumor Viruses Vol. 1 (eds Weiss, R., Teich, N., Varmus, H. & Coffin, J.) 513–648 (Cold Spring Harbor Laboratory, New York, 1984).

    Google Scholar 

  2. Katoh, I., Yasunaga, T., Ikawa, Y. & Yoshinaka, Y. Nature 329, 654–656 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Seelmeier, S., Schmidt, H., Turk, V. & von der Helm, K. Proc. natn. Acad. Sci. U.S.A. 85, 6612–6616 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Voynow, S. & Coffin, J. J. Virol. 55, 79–85 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Katoh, I. et al. Virology 145, 280–292 (1985).

    Article  CAS  Google Scholar 

  6. Alexander, F. et al. J. Virol. 61, 534–542 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kohl, N. et al. Proc. natn. Acad. Sci. U.S.A 85, 4686–4690 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Felsenstein, K. & Goff, S. J. Virol. 62, 2179–2182 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Demsey, A., Collins, F. & Kawka, B. J. Virol. 36, 872–876 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshinaka, Y. & Luftig, R. Virology 111, 239–250 (1981).

    Article  CAS  Google Scholar 

  11. Khan, A. & Stephenson, J. J. Virol 29, 649–656 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kotler, M., Danho, W., Katz, R. A., Leis, J. & Skalka, A. M. J. biol. Chem. (in the press).

  13. Toh, H., Ono, M., Saigo, K. & Miyata, T. Nature 315, 691–692 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Miller, R. Science 236, 722–725 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Kotler, M., Katz, R., Danho, W., Leis, J. & Skalka, A. Proc. natn. Acad. Sci. U.S.A. 85, 4185–4189 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Schneider, J. & Kent, S. Cell 54, 363–368 (1988).

    Article  CAS  Google Scholar 

  17. Tang, J., James, M. N. G., Hsu, I. N., Jenkins, J. A. & Blundell, T. L. Nature 271, 618–621 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Pearl, L. & Taylor, W. Nature 329, 351–354 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Andreeva, N. S., Zdanov, A. S., Gustchina, A. E. & Fedorov, A. A. J. biol. Chem. 259, 11353–11365 (1984).

    CAS  PubMed  Google Scholar 

  20. Suguna, K. et al. J. molec. Biol. 196, 877–900 (1987).

    Article  CAS  Google Scholar 

  21. Blundell, T., Jenkins, J., Pearl, L., Sewell, T. & Pedersen, V. in Aspartic Proteinases and their Inhibitors (ed. Kostka, V.) 151–161 (Walter de Gruyter, Berlin, 1985).

    Google Scholar 

  22. James, M. N. G. & Sielecki, A. R. J. molec. Biol. 163, 299–361 (1983).

    Article  CAS  Google Scholar 

  23. Miller, M., Leis, J. & Wlodawer, A. J. molec. Biol. 204, 211–212 (1988).

    Article  CAS  Google Scholar 

  24. Howard, A. J. et al. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  25. Blundell, T. L. & Johnson, L. N. Protein Crystallography (Academic, London, 1976).

    Google Scholar 

  26. Steigemann, W. thesis, Technical Univ. Munich (1972).

  27. Wang, B. C. in Methods in Enzymology Vol. 115 (eds Wyckoff, H. W., Hirs, C. H. & Timasheff, S. N.) 90–112 (Academic, London, 1985).

    Google Scholar 

  28. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  29. Hendrickson, W. A. in Methods in Enzymology Vol. 115 (eds Wyckoff, H. W., Hirs, C. H. & Timasheff, S. N.) 252–270 (Academic, London, 1985).

    Google Scholar 

  30. Andreeva, N. S. et al. Molec. Biol. Engl. Trans. Molec. Biol. (Mosc) 12, 704–716 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, M., Jaskólski, M., Rao, J. et al. Crystal structure of a retroviral protease proves relationship to aspartic protease family. Nature 337, 576–579 (1989). https://doi.org/10.1038/337576a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337576a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing