Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region

Abstract

DELETIONS of muscle mitochondrial DNA (mtDNA) have recently been found in patients with mitochondrial myopathy1–3. However, as most of the described cases were sporadic, and individual deletions involved different portions of mtDNA1,2, the mechanism(s) producing the molecular lesions, as well as their mode of transmission, remain unclear. By studying families with mtDNA heteroplasmy4, valuable information can be obtained about the role of inheritable factors in the pathogenesis of these disorders. We have studied four members of a family with autosomal dominant mitochondrial myopathy. Multiple deletions, involving the same portion of muscle mtDNA, were identified in all patients. Sequence analysis of the mutant mtDNAs, performed after DNA amplification by the polymerase-chain reaction showed that all the deletions start within a 12-nucleotide stretch at the 5′ end of the D-loop region, a site of active communication between the nucleus and the mtDNA. The data indicate that a mutation of a nuclear-coded protein can destroy the integrity of the mitochondrial genome in a specific, heritable way.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holt, I. J., Harding, A. E. & Morgan-Hughes, J. A. Nature 331, 717–719 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Zeviani, M. et al. Neurology 38, 1339–1346 (1988).

    Article  CAS  Google Scholar 

  3. Lestienne, P. & Ponsot, G. Lancet i, 885 (1988).

    Article  Google Scholar 

  4. Ozawa, T. et al. Biochem. biophys. Res. Commun. 154, 1240–1247 (1988).

    Article  CAS  Google Scholar 

  5. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Saiki, R. K. et al. Science 230, 1350–1354 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Clayton, D. A. Cell 28, 693–705 (1982).

    Article  CAS  Google Scholar 

  8. Chang, D. D. & Clayton, D. A. Cell 36, 635–643 (1984).

    Article  CAS  Google Scholar 

  9. Doda, J. N., Wright, C. T. & Clayton, D. A. Proc. natn. Acad. Sci. U.S.A. 78, 6116–6120 (1981).

    Article  ADS  CAS  Google Scholar 

  10. MacKay, S. L. D. et al. Mol. cell. Biol. 6, 1261–1267 (1986).

    Article  CAS  Google Scholar 

  11. Anderson, S. M., et al. J. molec. Biol. 156, 683–717 (1982).

    Article  CAS  Google Scholar 

  12. King, T. C. & Low, R. L. J. biol. Chem. 262, 6204–6213 (1987).

    CAS  PubMed  Google Scholar 

  13. Bibb, M. J. et al. Cell 26, 167–180 (1981).

    Article  CAS  Google Scholar 

  14. Koike, K. et al. Gene 20, 177–185 (1982).

    Article  CAS  Google Scholar 

  15. Wong, T. W. & Clayton, D. A. J. biol. Chem. 260, 11530–11535 (1985).

    CAS  PubMed  Google Scholar 

  16. Kornberg, A. Eukaryotic DNA Polymerase Ch. 56 (Freeman, San Francisco, 1982).

    Google Scholar 

  17. Lazarus, G. M. et al. Biochemistry 26, 6195–6203 (1987).

    Article  CAS  Google Scholar 

  18. Castora, F. J., Lazarus, G. M. & Kunes, D. Biochem. biophys. Res. Commun. 130, 854–866 (1985).

    Article  CAS  Google Scholar 

  19. Van Tuyle, G. C. & Pavco, P. A. J. biol. Chem. 256, 12772–12779 (1981).

    CAS  PubMed  Google Scholar 

  20. Mignotte, B., Barat, M. & Mounlou, J-C. Nucleic Acids Res. 13, 1703–1716 (1985).

    Article  CAS  Google Scholar 

  21. Tomhinson, A. E. & Linn, S. Nucleic Acids Res. 14, 9579–9593 (1986).

    Article  Google Scholar 

  22. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: a Laboratory Manual (Cold Spring Harbor Laboratory, New York 1982).

    Google Scholar 

  23. Sanger, F., Miklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeviani, M., Servidei, S., Gellera, C. et al. An autosomal dominant disorder with multiple deletions of mitochondrial DNA starting at the D-loop region. Nature 339, 309–311 (1989). https://doi.org/10.1038/339309a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339309a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing