Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Capping of surface receptors and concomitant cortical tension are generated by conventional myosin

Abstract

WE have investigated the role of cytoskeletal contraction in the capping of surface proteins crosslinked by concanavalin A on mutant Dictyostelium cells lacking conventional myosin1. Measurements of cellular deformability to indicate the development of cortical tension2 show that cells of the wild-type parental strain, AX4, stiffen early during capping and relax back towards the softer resting state as the process is completed. Mutant cells lacking myosin (mhcA) have a lower resting-state stiffness, and fail to stiffen and to cap crosslinked proteins on binding concanavalin A. Hence conventional myosin is essential both for capping and for the concomitant increase in cell stiffness. Furthermore, depletion of cellular ATP by azide causes a 'rigor' contraction in AX4 cells which makes thenustiffen and become spherical. By contrast, the mhcA cells fail to respond in these ways. These measurements of cortical tension in non-muscle cells can thus be directly correlated with the presence of conventional myosin, demonstrating that contractile tension generated by myosin can drive both a change of cell shape and the capping of crosslinked surface receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manstein, D. J., Titus, M. A., De Lozanne, A. & Spudich, J. A. EMBO J 8, 923–932 (1989).

    Article  CAS  Google Scholar 

  2. Pasternak, C. & Elson, E. L. J. Cell Biol. 100, 860–872 (1985).

    Article  CAS  Google Scholar 

  3. Bray, D. & White, J. G. Science 239, 883–888 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Bretscher, M. S. Science 224, 681–686 (1984).

    Article  ADS  CAS  Google Scholar 

  5. Sheetz, M. P., Turney, S., Qian, H. & Elson, E. L. Nature 340, 284–288 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Schreiner, G. & Unanue, E. R. Adv. Immun. 24, 37–165 (1976).

    Article  CAS  Google Scholar 

  7. Bourguignon, L. Y. W. & Bourguignon, G. J. Int. Rev. Cytol. 87, 195–224 (1984).

    Article  CAS  Google Scholar 

  8. Taylor, R. B., Duffus, W. P. H., Raff, M. C. & DePetris, S. Nature 233, 225–229 (1971).

    Article  CAS  Google Scholar 

  9. Condeelis, J. J. Cell Biol. 80, 751–758 (1979).

    Article  CAS  Google Scholar 

  10. Carboni, J. M. & Condeelis, J. S. J. Cell Biol. 100, 1884–1893 (1985).

    Article  CAS  Google Scholar 

  11. Yumura, S. & Fukui, Y. Nature 314, 194–196 (1985).

    Article  ADS  CAS  Google Scholar 

  12. De Lozanne, A. & Spudich, J. A. Science 236, 1086–1091 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Wessels, D. et al. Devl Biol. 128, 164–177 (1988).

    Article  CAS  Google Scholar 

  14. Bijsterborch, M. K., Meade, C. J., Turner, G. A. & Klaus, G. G. B. Cell 41, 999–1006 (1985).

    Article  Google Scholar 

  15. Pozzan, T., Arslan, P., Tsien, R. Y. & Rink, T. J. J. Cell Biol. 94, 335–340 (1982).

    Article  CAS  Google Scholar 

  16. Fechheimer, M. & Cebra, H. J. J. Cell Biol. 93, 261–268 (1982).

    Article  CAS  Google Scholar 

  17. Persson, R., Ahlstrom, E. & Fries, E. J. Cell Biol. 107, 2503–2510 (1988).

    Article  CAS  Google Scholar 

  18. Korn, E. D. & Hammer III, J. A. A. A Rev. Biophys. Chem. 17, 23–45 (1988).

    Article  CAS  Google Scholar 

  19. Weber, A. & Murray, J. M. Physiol. Rev. 53, 612–673 (1973).

    Article  CAS  Google Scholar 

  20. Mangeat, P. H. & Burridge, K. J. Cell Biol. 98, 1363–1377 (1984).

    Article  CAS  Google Scholar 

  21. Mabuchi, I. & Okuno, M. J. Cell Biol. 74, 251–263 (1977).

    Article  CAS  Google Scholar 

  22. Höner, B., Citi, S., Kendrick-Jones, J. & Jockusch, B. M. J. Cell Biol. 107, 2181–2189 (1988).

    Article  Google Scholar 

  23. André, E. et al. J. Cell Biol. 108, 985–995 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasternak, C., Spudich, J. & Elson, E. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature 341, 549–551 (1989). https://doi.org/10.1038/341549a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341549a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing