Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Movement of microtubules by single kinesin molecules

Abstract

Kinesin is a motor protein that uses energy derived from ATP hydrolysis to move organelles along microtubules. Using a new technique for measuring the movement produced in vitro by individual kinesin molecules, it is shown that a single kinesin molecule can move a microtubule for several micrometres. New information about the mechanism of force generation by kinesin is presented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bagshaw, C. R. Muscle Contraction (Chapman and Hall, London, 1982).

    Book  Google Scholar 

  2. Cooke, R. CRC Crit. Rev. Biochem. 21, 53–118 (1986).

    Article  CAS  Google Scholar 

  3. Sheetz, M. P. & Spudich, J. A. Nature 303, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Gelles, J., Schnapp, B. J. & Sheetz, M. P. Nature 331, 450–453 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Vale, R. D., Reese, T. S. & Sheetz, M. P. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  6. Kron, S. J. & Spudich, J. A. Proc. natn. Acad. Sci. U.S.A. 83, 6272–6276 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Kishino, A. & Yanagida, T. Nature 334, 74–76 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Bloom, G. S., Wagner, M. C., Pfister, K. K. & Brady, S. T. Biochemistry 27, 3409–3416 (1988).

    Article  CAS  Google Scholar 

  9. Kuznetsov, S. A. et al. EMBO J. 7, 353–356 (1988).

    Article  CAS  Google Scholar 

  10. Ingold, A. L., Cohn, S. A. & Scholey, J. M. J. Cell Biol. 107, 2657–2667 (1988).

    Article  CAS  Google Scholar 

  11. Hirokawa, N. et al. Cell 56, 867–878 (1989).

    Article  CAS  Google Scholar 

  12. Kuznetsov, S. A., Vaisberg, E. A., Rothwell, R. W., Murphy, D. B. & Gelfand, V. I. J. biol. Chem. 264, 589–595 (1989).

    CAS  Google Scholar 

  13. Scholey, J. M., Heuser, J., Yang, J. T. & Goldstein, L. S. B. Nature 338, 355–357 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Yang, J. T., Laymon, R. A. & Goldstein, L. S. B. Cell 56, 879–889 (1989).

    Article  CAS  Google Scholar 

  15. Cohn, S. A., Ingold, A. L. & Scholey, J. M. J. biol. Chem. 264, 4290–4297 (1989).

    CAS  PubMed  Google Scholar 

  16. Kron, S. J., Toyoshima, Y. Y. & Spudich, J. A. Biophys. J. 53, 195 (1988).

    Google Scholar 

  17. Vale, R. D., Soll, D. & Gibbons, I. R. Cell (in the press).

  18. Amos, L. A. J. Cell Sci. 87, 105–111 (1987).

    CAS  Google Scholar 

  19. Mitchison, T. & Kirschner, M. Nature 312, 237–242 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Fersht, A. Enzyme Structure and Mechanism (Freeman, New York, 1985).

    Google Scholar 

  21. Brennen, C. & Winet, H. A. Rev. Fluid Mech. 9, 339–398 (1977).

    Article  ADS  Google Scholar 

  22. Kuznetsov, S. A. & Gelfand, V. I. Proc. natn. Acad. Sci. U.S.A. 83, 8530–8534 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Hackney, D. D. Proc. natn. Acad. Sci. U.S.A. 85, 6314–6318 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Toyoshima, Y. Y. et al. Nature 328, 536–539 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Harada, Y., Noguchi, A., Kishino, A. & Yanagida, T. Nature 326, 805–808 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Sale, W. S. & Fox, L. A. J. Cell Biol. 107, 1793–1797 (1988).

    Article  CAS  Google Scholar 

  27. Miller, R. H. & Lasek, R. J. J. Cell Biol. 101, 2181–2193 (1985).

    Article  CAS  Google Scholar 

  28. Neher, E. & Sakmann, B. Nature 260, 799–802 (1976).

    Article  ADS  CAS  Google Scholar 

  29. Weingarten, M. D., Suter, M. M., Littman, D. R. & Kirschner, M. W. Biochemistry 13, 5529–5537 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard, J., Hudspeth, A. & Vale, R. Movement of microtubules by single kinesin molecules. Nature 342, 154–158 (1989). https://doi.org/10.1038/342154a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342154a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing