Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical asymmetric synthesis

Abstract

Thalidomide comes in two forms: a left-handed compound which is a powerful tranquilizer, and a right-handed version which can disrupt fetal development causing severe handicap. As a necessary consequence of synthetic methods available in the early 1960s the two forms were present in equal proportions in the manufactured drug, with catastrophic consequences. The thalidomide story is perhaps the most painful reminder of the importance of stereochemistry—the spatial ordering of groups in a molecule can be as influential as the chemical nature of the groups themselves. A principal problem in organic synthesis is, therefore, the development of methods for producing complex molecules with a stereochemically defined structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pratt, A. J., Davies, S. G., Brown, J. M. & Fleet, G. W. J. Chemy Br. 25, 259–268 (1989).

    Google Scholar 

  2. Morrison, J. D. (ed.) Asymmetric Synthesis Vol 1–5 (Wiley, New York, 1983–5).

  3. Brunner, H. Topics Stereochem. 18, 129–248 (1988).

    CAS  Google Scholar 

  4. Jacques, J., Wilen, S. H. & Collet, A. Enantiomers, Racemates and Resolutions (Wiley, New York, 1981).

    Google Scholar 

  5. Evans, D. A., Chapman, K. T. & Bisaha, J. J. Am. chem. Soc. 110, 1238–1256 (1988).

    Article  CAS  Google Scholar 

  6. Gao, Y. et al. J. Am. chem. Soc. 109, 5765–5777 (1987).

    Article  CAS  Google Scholar 

  7. Fleet, G. W. J., Ransden, N. G. & Witty, D. R. Tetrahedron 45, 327–336 (1989).

    Article  CAS  Google Scholar 

  8. Davies, S. G. et al. Phil. Trans. R. Soc. A326, 619–631 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Davies, S. G. Pure appl. Chem. 60, 13–20 (1988).

    Article  CAS  Google Scholar 

  10. Davies, S. G. et al. Bull. Soc. chim. Fr. 608–630 (1987).

  11. Bashiardes, G. & Davies, S. G. Tetrahedron Lett. 28, 5563–5564 (1987).

    Article  CAS  Google Scholar 

  12. Brown, S. L., Davies, S. G., Foster, D. F., Seeman, J. I. & Warner, P. Tetrahedron Lett. 27, 623–626 (1986).

    Article  CAS  Google Scholar 

  13. Porter, R. & Clark, S. (eds) Enzymes in Organic Synthesis, Ciba Foundation Symp. 111 (Pitman, London, 1985).

  14. Schneider, M. P. (ed.) Enzymes as Catalysts in Organic Synthesis (Riedel, Dordrecht, 1986).

    Google Scholar 

  15. Jones, J. B. Tetrahedron 42, 3351–3400 (1986).

    Article  CAS  Google Scholar 

  16. Yamada, H. & Shimizu, S. Angew. Chem. Int. Edn Engl. 27, 622–640 (1988).

    Article  Google Scholar 

  17. Pratt, A. J. Chemy Br. 25, 282–287 (1989).

    CAS  Google Scholar 

  18. Bednarski, M. D. et al. J. Am. chem. Soc. 111, 627–635 (1989).

    Article  CAS  Google Scholar 

  19. Kagan, H. B. Comprehensive Organometallic Chemistry Vol. 8, 560–600 (eds Wilkinson, G., Stone, F. G. A. & Abel, E. W.) (Pergamon, Oxford, 1982).

    Google Scholar 

  20. Brown, J. M. & Chaloner, P. Catalysis with Metal-Phosphine Complexes Ch. 4, 131–170 (ed. Pignolet, L.) (Plenum, New York, 1984).

    Google Scholar 

  21. James, B. R. Comprehensive Organometallic Chemistry Vol. 8, Ch. 51 (eds Wilkinson, G., Stone, F. G. A. & Abel, E. W.) (Pergamon, Oxford, 1982).

    Google Scholar 

  22. Takaya, H. et al. J. Am. chem. Soc. 109, 1596–1598 (1987).

    Article  CAS  Google Scholar 

  23. Kitamura, M. et al. J. Am. chem. Soc. 110, 629–631 (1988).

    Article  CAS  Google Scholar 

  24. Kagan, H. B. & Fiaud, J.-C. Topics Stereochem. 18, 249–330 (1988).

    CAS  Google Scholar 

  25. Brown, J. M., Cutting, I. & James, A. P. Bull. Soc. chim. Fr. 212–219 (1988).

  26. Brown, J. M. Angew. Chem., Int. Edn Engl. 26, 191–204 (1987).

    Google Scholar 

  27. Oguni, N. & Omi, T. Tetrahedron Lett. 25, 2823–2827 (1984).

    Article  CAS  Google Scholar 

  28. Kitamura, M., Suga, S., Kawai, K. & Noyori, R. J. Am. chem. Soc. 108, 6071–6072 (1986).

    Article  CAS  Google Scholar 

  29. Soai, K., Ookawa, A., Kaba, T. & Ogawa, K. J. Am. chem. Soc. 109, 7111–7119 (1987).

    Article  CAS  Google Scholar 

  30. Noyori, R., Suga, S., Kawai, K., Okada, S. & Kitamura, M. Pure appl. Chem. 60, 1597–1612 (1988).

    Article  CAS  Google Scholar 

  31. Oguni, N., Matsuda, Y. & Kaneko, T. J. Am. chem. Soc. 110, 7877–7879 (1988).

    Article  CAS  Google Scholar 

  32. Kitamura, A., Okada, S., Suga, S. & Noyori, R. J. Am chem. Soc. 111, 4028–4036 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, J., Davies, S. Chemical asymmetric synthesis. Nature 342, 631–636 (1989). https://doi.org/10.1038/342631a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/342631a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing