Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of epithelial tubules by growth factor HGF depends on the STAT pathway

Abstract

Hepatocyte growth factor (HGF) induces a three-phase response leading to the formation of branched tubular structures in epithelial cells1,2. The HGF receptor tyrosine kinase works through a Src homology (SH2) docking site that can activate several signalling pathways3. The first phase of the response (scattering), which results from cytoskeletal reorganization, loss of intercellular junctions and cell migration4, is dependent on phosphatidylinositol-3-OH kinase and Rac activation5,6. The second phase (growth) requires stimulation of the Ras–MAP kinase cascade7. Here we show that the third phase (tubulogenesis) is dependent on the STAT pathway. HGF stimulates recruitment of Stat-3 to the receptor, tyrosine phosphorylation, nuclear translocation and binding to the specific promoter element SIE. Electroporation of a tyrosine-phosphorylated peptide, which interferes with both the association of STAT to the receptor and STAT dimerization, inhibits tubule formation in vitro without affecting either HGF-induced ‘scattering’ or growth. The same result is obtained using a specific ‘decoy’ oligonucleotide that prevents STAT from binding to DNA and affecting the expression of genes involved in cell-cycle regulation (c-fos and waf-1). Activation of signal transducers that directly control transcription is therefore required for morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HGF induces STAT phosphorylation and translocation into the nucleus.
Figure 2: Stat-3 associates with the HGF receptor.
Figure 3: The SIE elements binds STAT and modulates the expression of HGF-induced genes.
Figure 4: Selective inhibition of branching morphogenesis by a STAT phosphopeptide.

Similar content being viewed by others

References

  1. Medico, E. et al. The tyrosine kinase receptors Ron and Sea control “scattering” and morphogenesis of liver progenitor cells in vitro. Mol. Biol. Cell 7, 495–504 (1996).

    Article  CAS  Google Scholar 

  2. Sachs, M. et al. Mitogenic and morphogenic activity of epithelial receptor tyrosine kinases. J. Cell Biol. 133, 1095–1107 (1996).

    Article  CAS  Google Scholar 

  3. Ponzetto, C. et al. Amultifunctional docking site mediates signalling and transformation by the Hepatocyte Growth Factor/Scatter Factor receptor family. Cell 77, 261–271 (1994).

    Article  CAS  Google Scholar 

  4. Stocker, M., Gherardi, E., Perryman, M. & Gray, J. Scatter factor is a fibroblast-derived modulator of epithelial cell motility. Nature 327, 239–242 (1987).

    Article  ADS  Google Scholar 

  5. Ridley, A. J., Comoglio, P. M. & Hall, A. Regulation of Scatter Factor/Hepatocyte Growth Factor responses by Ras, Rac, and Rho in MDCK cells. J. Cell Biol. 15, 1110–1122 (1995).

    CAS  Google Scholar 

  6. Royal, I. & Park, M. Hepatocyte Growth Factor-induced scatter of Madin–Darby canine kidney cells requires phosphatidylinositol 3-kinase. J. Biol. Chem. 270, 27780–27787 (1995).

    Article  CAS  Google Scholar 

  7. Ponzetto, C. et al. Specific uncoupling of GRB2 from the Met receptor. J. Biol. Chem. 271, 14119–14123 (1996).

    Article  CAS  Google Scholar 

  8. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Pelicci, G. et al. The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene 10, 1631–1638 (1995).

    CAS  PubMed  Google Scholar 

  10. Weidner, K. M. et al. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384, 173–176 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Graziani, A., Gramaglia, D., Cantley, L. C. & Comoglio, P. M. The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J. Biol. Chem. 266, 22087–22090 (1991).

    CAS  PubMed  Google Scholar 

  12. Ponzetto, C. et al. Anovel recognition motif for Phosphatidylinositol 3-kinase binding mediates its association with the Hepatocyte Growth Factor/Scatter Factor receptor. Mol. Cell Biol. 13, 4600–4608 (1993).

    Article  CAS  Google Scholar 

  13. Graziani, A., Gramaglia, D., dalla Zonca, P. & Comoglio, P. M. Hepatocyte Growth Factor/Scatter Factor stimulates the Ras-guanine nucleotide exchanger. J. Biol. Chem. 268, 9165–9168 (1993).

    CAS  PubMed  Google Scholar 

  14. Schindler, C. & Darnell, J. E. J Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem. 64, 621–651 (1995).

    Article  CAS  Google Scholar 

  15. Ihle, J. N. STATs: signal transducers and activators of transcription. Cell 84, 221–334 (1996).

    Article  Google Scholar 

  16. Leaman, D. W. et al. Roles of JAKs in activation of STATs and stimulation of c-fos gene expression by Epidermal Growth Factor. Mol. Cell. Biol. 16, 369–375 (1996).

    Article  CAS  Google Scholar 

  17. Silvennoinen, O., Ihle, J. N., Schlessinger, J. & Levy, D. E. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366, 583–585 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Wagner, B. J., Hayes, T. E., Hoban, C. J. & Cochran, B. H. The SIF binding element confers sis/PDGF inductibility onto the c-fos promoter. EMBO J. 9, 4477–4484 (1990).

    Article  CAS  Google Scholar 

  19. Durbin, J. E., Hackenmiller, R., Simon, M. C. & Levy, D. E. Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450 (1996).

    Article  CAS  Google Scholar 

  20. Liu, X. et al. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 11, 179–186 (1967).

    Article  Google Scholar 

  21. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Chin, Y. E. et al. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21WAF1/CIP1 mediated by STAT1. Science 272, 719–722 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Boccaccio, C., Gaudino, G., Gambarotta, G., Galimi, F. & Comoglio, P. M. Hepatocyte Growth factor (HGF) receptor expression is inducible and is part of the delayed-early response to HGF. J. Biol. Chem. 269, 12846–12851 (1994).

    CAS  PubMed  Google Scholar 

  24. Lucibello, F. C., Lowag, C., Neuberg, M. & Muller, R. Trans-repression of the mouse c-fos promoter: a novel mechanism of Fos-mediated trans-regulation. Cell 59, 999–1007 (1989).

    Article  CAS  Google Scholar 

  25. Giordano, S., Ponzetto, C., Di Renzo, M. F., Cooper, C. S. & Comoglio, P. M. Tyrosine kinase receptor indistinguishable from the c-Met protein. Nature 339, 155–156 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Gilman, M. Z., Wilson, R. N. & Weinberg, R. A. Multiple protein binding sites in the 5′-flanking region regulate c-fos expression. Mol. Cell. Biol. 6, 4305–4316 (1986).

    Article  CAS  Google Scholar 

  27. El-Deiry, W. S. et al. WAF-1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  28. Gambarotta, G. et al. Ets up-regulates MET transcription. Oncogene 13, 1911–1917 (1996).

    CAS  PubMed  Google Scholar 

  29. Raptis, L. H., Liu, S. K. W., Firth, K. L., Stiles, C. D. & Alberta, J. A. Electroporation of peptides into adherent cells in situ. Biotechniques 19, 104–114 (1995).

    Google Scholar 

  30. Comoglio, P. M. et al. Detection of phosphotyrosine containing proteins in the detergent insoluble fraction of RSV-transformed fibroblasts by azobenzene phosphonate antibodies. EMBO J. 3, 483–489 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Giordano (Pharmacia & Upjohn) for peptide synthesis; C. Ponzetto for discussions; A. Cignetto for secretarial help; and E. Wright for help with the manuscript. This work was supported by an AIRC grant to P.M.C. M.A. is recipient of a FIRC Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Boccaccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boccaccio, C., Andò, M., Tamagnone, L. et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature 391, 285–288 (1998). https://doi.org/10.1038/34657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34657

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing