Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Drosophila claret segregation protein is a minus-end directed motor molecule

Abstract

A PRODUCT encoded at the claret locus in Drosophila is needed for normal chromosome segregation in meiosis in females and in early mitotic divisions of the embryo1,2. The predicted amino-acid sequence of the segregation protein was shown recently to be strikingly similar to Drosophila kinesin heavy chain3. We have expressed the claret segregation protein in bacteria and have found that the bacterially expressed protein has motor activity in vitro with several novel features. The claret motor is slow (4 μm min−1), unlike either kinesin or dyneins. It has the directionality, the ability to generate torque and the sensitivity to inhibitors reported previously for dyneins. The finding of minus-end directed motor activity for a protein with sequence similarity to kinesin suggests that the dynein and kinesin motor domains are ancestrally related. The minus-end directed motor activity of the claret motor is consistent with a role for this protein in producing chromosome movement along spindle microtubules during prometaphase and/or anaphase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sturtevant, A. H. Z. Wiss. Zool. 135, 323–356 (1929).

    Google Scholar 

  2. Lewis, E. B. & Gencarella, W. Genetics 37, 600–601 (1952).

    Google Scholar 

  3. Endow, S. A., Henikoff, S. & Niedziela, L. S. Nature 345, 81–83 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Yamamoto, A. H., Komma, D. J., Shaffer, C. D., Pirrotta, V. & Endow, S. A. EMBO J. 8, 3543–3552 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McDonald, H. B. & Goldstein, L. S. B. Cell 61, 991–1000 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Walker, R. A., Gliksman, N. R. & Salmon, E. D. in Optical Microscopy for Biology (eds Herman, B. & Jacobsen, K.) 395–407 (Wiley-Liss, New York, 1990).

    Google Scholar 

  7. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. G. & Goldstein, L. S. B. Science 249, 42–47 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Mcintosh, J. R. & Porter, M. E. J. biol. Chem. 284, 6001–6004 (1989).

    Google Scholar 

  9. Paschal, B. M. & Vallee, R. B. Nature 330, 181–183 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cohn, S. A., Ingold, A. L. & Scholey, J. M. J. biol. Chem. 264, 4290–4297 (1989).

    CAS  PubMed  Google Scholar 

  11. Vale, R. D., Schnapp, B. J., Reese, T. S. & Sheetz, M. P. Cell 40, 559–569 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Paschal, B. M., Shpetner, H. S. & Vallee, R. B. J. Cell Biol. 105, 1273–1282 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Paschal, B. M. et al. Nature 330, 672–674 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Vale, R. D. & Toyoshima, Y. Y. Cell 52, 459–469 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Belmont, L. D., Hyman, A. A., Sawin, K. E. & Mitchison, T. J. Cell 62, 579–589 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Hyman, A. A. et al. Meth. Enzym. (in the press).

  17. Vale, R. D. et al. Cell 43, 623–632 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. Vale, R. D. & Goldstein, L. S. B. Cell 60, 883–885 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Salmon, E. D. in Mitosis (eds Hyams, J. S. & Brinkley, B. R.) 119–181 (Academic, San Diego, 1989).

    Google Scholar 

  20. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorff, J. W. Meth. Enzym. 185, 60–89 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Walker, R. A. et al. J. Cell Biol. 107, 1437–1448 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Nature 331, 499–504 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sale, W. S. & Fox, L. A. J. Cell Biol. 107, 1793–1797 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Kuznetsov, S. A. et al. EMBO J. 7, 353–358 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, R., Salmon, E. & Endow, S. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature 347, 780–782 (1990). https://doi.org/10.1038/347780a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347780a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing