Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cyclin is degraded by the ubiquitin pathway

Abstract

Cyclin degradation is the key step governing exit from mitosis and progress into the next cell cycle. When a region in the N terminus of cyclin is fused to a foreign protein, it produces a hybrid protein susceptible to proteolysis at mitosis. During the course of degradation, both cyclin and the hybrid form conjugates with ubiquitin. The kinetic properties of the conjugates indicate that cyclin is degraded by ubiquitin-dependent proteolysis. Thus anaphase may be triggered by the recognition of cyclin by the ubiquitin-conjugating system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cell 33, 389–396 (1983).

    Article  CAS  Google Scholar 

  2. Solomon, M., Glotzer, M., Lee, T. H., Philippe, M. & Kirschner, M. W. Cell 63, 1013–1024 (1990).

    Article  CAS  Google Scholar 

  3. Murray, A. W., Solomon, M. J. & Kirschner, M. W. Nature 339, 280–286 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Nurse, P. Nature 344, 503–508 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Félix, M.-A., Labbé, J.-C., Dorée, M., Hunt, T. & Karsenti, E. Nature 346, 379–382 (1990).

    Article  ADS  Google Scholar 

  6. Schimke, R. & Doyle, D. A. Rev. Biochem. 39, 929–976 (1970).

    Article  CAS  Google Scholar 

  7. Bond, J. S. & Butler, P. E. A. Rev. Biochem. 56, 333–364 (1987).

    Article  CAS  Google Scholar 

  8. Rechsteiner, M. A. Rev. Cell Biol. 3, 1–30 (1987).

    Article  CAS  Google Scholar 

  9. Hershko, A. J. biol. Chem. 263, 15237–15240 (1988).

    CAS  Google Scholar 

  10. Ciechanover, A. & Schwartz, A. L. Trends biochem. Sci. 14, 483–488 (1989).

    Article  CAS  Google Scholar 

  11. Chau, V. et al. Science 243, 1576–1583 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Jentsch, S., McGrath, J. P. & Varshavsky, A. Nature 329, 131–134 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Goebl, M. G. et al. Science 241, 1331–1335 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Seufert, W. & Jentsch, S. EMBO J. 9, 543–550 (1990).

    Article  CAS  Google Scholar 

  15. Jabben, M., Shanklin, J. & Vierstra, R. D. J. biol. Chem. 264, 4998–5005 (1989).

    CAS  PubMed  Google Scholar 

  16. Murray, A. W. & Kirschner, M. W. Nature 339, 275–280 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Minshull, J., Golsteyn, R., Hill, C. & Hunt, T. EMBO J. 9, 2865–2875 (1990).

    Article  CAS  Google Scholar 

  18. Luca, F. C. & Ruderman, J. V. J. Cell Biol. 109, 1895–1909 (1989).

    Article  CAS  Google Scholar 

  19. Lehner, C. F. & O'Farrell, P. H. Cell 61, 535–547 (1990).

    Article  CAS  Google Scholar 

  20. Pines, J. & Hunter, T. Nature 346, 760–763 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Tatchell, K., Narmyth, K. A. & Hall, B. D. Cell 27, 25–35 (1981).

    Article  CAS  Google Scholar 

  22. Hochstrasser, M. A. & Varshavsky, A. Cell 61, 697–708 (1990).

    Article  CAS  Google Scholar 

  23. Hadwiger, J. A., Wittenberg, C., Richardson, H. E., de Barros-Lopes, M. & Reed, S. I. Proc. natn. Acad. Sci. U.S.A. 86, 6255–6259 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Bachmair, A. & Varshavsky, A. Cell 56, 1019–1032 (1989).

    Article  CAS  Google Scholar 

  25. Gonda, D. K. et al. J. biol. Chem. 264, 16700–16712 (1989).

    CAS  PubMed  Google Scholar 

  26. Ferber, S. & Ciechanover, A. J. biol. Chem. 261, 3128–3134 (1986).

    CAS  PubMed  Google Scholar 

  27. Jentsch, S., Seufert, W., Sommer, T. & Reins, H.-A. Trends biochem. Sci. 15, 195–198 (1990).

    Article  CAS  Google Scholar 

  28. Bachmair, A., Finley, D. & Varshavsky, A. Science 234, 179–86 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Shanklin, J., Jabben, M. & Vierstra, R. D. Proc. natn. Acad. Sci. U.S.A. 84, 359–363 (1987).

    Article  ADS  CAS  Google Scholar 

  30. Finley, D., Ciechanover, A. & Varshavsky, A. Cell. 37, 43–55 (1984).

    Article  CAS  Google Scholar 

  31. Kulka, R. G. et al. J. biol. Chem. 263, 15726–15731 (1988).

    CAS  PubMed  Google Scholar 

  32. Finley, D., Bartel, B. & Varshavsky, A. Nature 338, 394–401 (1989).

    Article  ADS  CAS  Google Scholar 

  33. Redman, K. L. & Rechsteiner, M. Nature 338, 438–40 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Callis, J., Raasch, J. A., & Vierstra, R. D. J. biol. Chem. 265, 12486–12493 (1990).

    CAS  PubMed  Google Scholar 

  35. Hara, K., Tydeman, P. & Kirschner, M. W. Proc. natn. Acad. Sci. U.S.A. 77, 462–466 (1980).

    Article  ADS  CAS  Google Scholar 

  36. Gerhart, J., Wu, M. & Kirschner, M. W. J. Cell Biol. 98, 1247–1255 (1984).

    Article  CAS  Google Scholar 

  37. Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. Nature 342, 512–511 (1989).

    Article  ADS  CAS  Google Scholar 

  38. Rosenberg, A. H. et al. Gene 56, 125–135 (1987).

    Article  CAS  Google Scholar 

  39. Siegel, V. & Walter, P. Cell 52, 39–49 (1988).

    Article  CAS  Google Scholar 

  40. Pines, J. & Hunt, T. EMBO J. 6, 2987–2995 (1987).

    Article  CAS  Google Scholar 

  41. Wang, J., Chenivesse, X., Henglein, B. & Bréchot, C. Nature 343, 555–557 (1990).

    Article  ADS  CAS  Google Scholar 

  42. Minshull, J., Blow, J. J. & Hunt, T. Cell 56, 947–956 (1989).

    Article  CAS  Google Scholar 

  43. Pines, J. & Hunter, T. Cell 58, 833–846 (1989).

    Article  CAS  Google Scholar 

  44. Westendorf, J. M., Swenson, K. I. & Ruderman, J. V. J. Cell Biol. 108, 1431–1444 (1989).

    Article  CAS  Google Scholar 

  45. Booher, R. & Beach, D. EMBO J. 7, 2321–2327 (1988).

    Article  CAS  Google Scholar 

  46. Labbé, J. C. et al. EMBO J. 8, 3053–3058 (1989).

    Article  Google Scholar 

  47. Swenson, K. I., Farrell, K. M. & Ruderman, J. V. Cell 47, 861–870 (1986).

    Article  CAS  Google Scholar 

  48. Lehner, C. & O'Farrell, P. Cell 56, 957–968 (1989).

    Article  CAS  Google Scholar 

  49. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glotzer, M., Murray, A. & Kirschner, M. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132–138 (1991). https://doi.org/10.1038/349132a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349132a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing