Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technology Review
  • Published:

RNA interference: genetic wand and genetic watchdog

Abstract

In many species, introduction of double-stranded RNA (dsRNA) induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. The apparently widespread nature of RNAi in eukaryotes, ranging from trypanosome to mouse, has sparked great interest from both applied and fundamental standpoints. Here we review the technical improvements being made to increase the experimental potential of this technique. We also discuss recent advances in uncovering the proteins that act during the RNAi process, discoveries that have revealed enticing links between transposition, transgene silencing and RNAi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two strategies for delivery in C. elegans.
Figure 2: A model for RNAi/PTGS/quelling.

References

  1. van der Krol, A. R., Mur, L. A., Beld, M., Mol, J. N. & Stuitje, A. R. Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression . Plant Cell 2, 291–299 (1990).

    Article  CAS  Google Scholar 

  2. Napoli, C., Lemieux, C. & Jorgensen, R. Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans . Plant Cell 2, 279– 289 (1990).

    Article  CAS  Google Scholar 

  3. Smith, C. J. S. et al. Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol. Gen. Genet. 224, 477–481 ( 1990).

    Article  CAS  Google Scholar 

  4. Romano, N. & Macino, G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6, 3343– 3353 (1992).

    Article  CAS  Google Scholar 

  5. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  Google Scholar 

  6. Guo, S. & Kemphues, K. J. par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81, 611–620 (1995).

    Article  CAS  Google Scholar 

  7. Rocheleau, C. E. et al. Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90, 707–716 (1997).

    Article  CAS  Google Scholar 

  8. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  Google Scholar 

  9. Misquitta, L. & Paterson, B. M. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc. Natl Acad. Sci. USA 96, 1451–1456 (1999).

    Article  CAS  Google Scholar 

  10. Ngo, H., Tschudi, C., Gull, K. & Ullu, E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl Acad. Sci. USA 95, 14687–14692 (1998).

    Article  CAS  Google Scholar 

  11. Sanchez Alvarado, A. & Newmark, P. A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl Acad. Sci. USA 96, 5049– 5054 (1999).

    Article  CAS  Google Scholar 

  12. Lohmann, J. U., Endl, I. & Bosch, T. C. Silencing of developmental genes in Hydra. Dev. Biol. 214, 211–214 (1999).

    Article  CAS  Google Scholar 

  13. Wargelius, A., Ellingsen, S. & Fjose, A. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem. Biophys. Res. Commun. 263, 156–161 (1999).

    Article  CAS  Google Scholar 

  14. Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nature Cell Biol. 2, 70–75 (2000).

    Article  CAS  Google Scholar 

  15. Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959– 13964 (1998).

    Article  CAS  Google Scholar 

  16. Que, Q., Wang, H. Y. & Jorgensen, R. A. Distinct patterns of pigment suppression are produced by allelic sense and antisense chalcone synthase transgenes in Petunia flowers. Plant J. 13, 401– 409 (1998).

    Article  CAS  Google Scholar 

  17. Palauqui, J. C. & Balzergue, S. Activation of systemic acquired silencing by localised introduction of DNA. Curr. Biol. 9, 59–66 ( 1999).

    Article  CAS  Google Scholar 

  18. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D. C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    Article  CAS  Google Scholar 

  19. Dougherty, W. G. & Parks, T. D. Transgenes and gene suppression: telling us something new? Curr. Opin. Cell Biol. 7, 399–405 ( 1995).

    Article  CAS  Google Scholar 

  20. Depicker, A. & Montagu, M. V. Post-transcriptional gene silencing in plants. Curr. Opin. Cell Biol. 9, 373 –382 (1997).

    Article  Google Scholar 

  21. Vaucheret, H. et al. Transgene-induced gene silencing in plants. Plant J. 16, 651–659 ( 1998).

    Article  CAS  Google Scholar 

  22. Baulcombe, D. C. RNA makes RNA makes no protein. Curr. Biol. 9, R599–R601 (1999).

    Article  CAS  Google Scholar 

  23. Fire, A. RNA-triggered gene silencing. Trends Genet. 15, 358–363 (1999).

    Article  CAS  Google Scholar 

  24. Selker, E. U. Gene silencing: repeats that count. Cell 97, 157–160 (1999).

    Article  CAS  Google Scholar 

  25. Sharp, P. A. RNAi and double-strand RNA. Genes Dev. 13, 139–141 (1999).

    Article  CAS  Google Scholar 

  26. Bosher, J. M., Dufourcq, P., Sookhareea, S. & Labouesse, M. RNA interference can target pre-mRNA: consequences for gene expression in a C. elegans operon. Genetics 153, 1245–1256 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabara, H., Grishok, A. & Mello, C. C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430– 431 (1998).

    Article  CAS  Google Scholar 

  28. Timmons, L. & Fire, A. Specific interference by ingested dsRNA . Nature 395, 854 ( 1998).

    Article  CAS  Google Scholar 

  29. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123– 132 (1999).

    Article  CAS  Google Scholar 

  30. Hall, D. H. et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma . Dev. Biol. 212, 101–123 (1999).

    Article  CAS  Google Scholar 

  31. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by dsRNA. Nature Genet. 24, 180–183 (2000).

    Article  CAS  Google Scholar 

  32. Montgomery, M. K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  Google Scholar 

  33. Baulcombe, D. C. RNA as a target and an initiator of post-transcriptional gene silencing in transgenic plants. Plant Mol. Biol. 32, 79–88 (1996).

    Article  CAS  Google Scholar 

  34. Cogoni, C. & Macino, G. Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc. Natl Acad. Sci. USA 94 , 10233–10238 (1997).

    Article  CAS  Google Scholar 

  35. Lindbo, J. L., Silva-Rosales, L., Proebsting, W. M. & Dougherty, W. G. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus expression. Plant Cell 5, 1749–1759 ( 1993).

    Article  CAS  Google Scholar 

  36. Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166–169 ( 1999).

    Article  CAS  Google Scholar 

  37. Schiebel, W., Haas, B., Marinkovic, S., Klanner, A. & Sanger, H. L. RNA-directed RNA polymerase from tomato leaves. I. Purification and physical properties. J. Biol. Chem. 268, 11851–11857 (1993).

    CAS  PubMed  Google Scholar 

  38. Schiebel, W. et al. Isolation of an RNA-directed RNA polymerase-specific cDNA clone from tomato. Plant Cell 10, 2087– 2101 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schiebel, W., Haas, B., Marinkovic, S., Klanner, A. & Sanger, H. L. RNA-directed RNA polymerase from tomato leaves. II. Catalytic in vitro properties. J. Biol. Chem. 268, 11858–11867 (1993).

    CAS  PubMed  Google Scholar 

  40. Ikegami, M. & Fraenkel-Conrat, H. Characterization of the RNA-dependent RNA polymerase of tobacco leaves. J. Biol. Chem. 254, 149–154 ( 1979).

    CAS  PubMed  Google Scholar 

  41. Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469– 481 (1999).

    CAS  PubMed  Google Scholar 

  42. Cox, D. N. et al. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 12, 3715–3727 (1998).

    Article  CAS  Google Scholar 

  43. Schmidt, A. et al. Genetic and molecular characterisation of sting, a gene involved in crystal formation and meiotic drive in the male germ line of Drosophila melanogaster. Genetics 151, 749–760 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170– 180 (1998).

    Article  CAS  Google Scholar 

  45. Zou, C., Zhang, Z., Wu, S. & Osterman, J. C. Molecular cloning and characterization of a rabbit eIF2C protein. Gene 211, 187–194 (1998).

    Article  CAS  Google Scholar 

  46. The C. elegans Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology . Science 282, 2012–2018 (1998).

  47. Proud, C. G. PKR: a new name and new roles. Trends Biochem. Sci. 20, 241–246 (1995).

    Article  CAS  Google Scholar 

  48. Jagus, R., Joshi, B. & Barber, G. N. PKR, apoptosis and cancer. Int. J. Biochem. Cell Biol. 31, 123–138 ( 1999).

    Article  CAS  Google Scholar 

  49. Collins, J., Saari, B. & Anderson, P. Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature 328, 726–728 (1987).

    Article  CAS  Google Scholar 

  50. Ketting, R. F., Haverkamp, T. H. A., van Luenen, H. G. A. M. & Plasterk, R. H. A. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99, 133–141 (1999).

    Article  CAS  Google Scholar 

  51. Mian, I. S. Comparative sequence analysis of ribonucleases HII, III, II PH and D. Nucleic Acids Res. 25, 3187–3195 (1997).

    Article  CAS  Google Scholar 

  52. Briggs, M. W., Burkard, K. T. & Butler, J. S. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3´ end formation . J. Biol. Chem. 273, 13255– 13263 (1998).

    Article  CAS  Google Scholar 

  53. Allmang, C. et al. The yeast exosome and human PM-Scl are related complexes of 3´ → 5´ exonucleases. Genes Dev. 13, 2148– 2158 (1999).

    Article  CAS  Google Scholar 

  54. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3´ → 5´ exoribonucleases . Cell 91, 457–466 (1997).

    Article  CAS  Google Scholar 

  55. Jacobs Anderson, J. S. & Parker, R. The 3´ to 5´ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3´ to 5´ exonucleases of the exosome complex. EMBO J. 17, 1497– 1506 (1998).

    Article  Google Scholar 

  56. Carpousis, A. J., Vanzo, N. F. & Raynal, L. C. mRNA degradation. A tale of poly(A) and multiprotein machines. Trends Genet. 15, 24– 28 (1999).

    Article  CAS  Google Scholar 

  57. Jensen, S., Gassama, M. P. & Heidmann, T. Taming of transposable elements by homology-dependent gene silencing. Nature Genet. 21, 209– 212 (1999).

    Article  CAS  Google Scholar 

  58. Kelly, W. G., Xu, S., Montgomery, M. K. & Fire, A. Distinct requirements for somatic and germline expression of a generally expressed Caenorhabditis elegans gene. Genetics 146, 227–238 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Korf, I., Fan, Y. & Strome, S. The Polycomb group in Caenorhabditis elegans and maternal control of germline development. Development 125, 2469 –2478 (1998).

    CAS  PubMed  Google Scholar 

  60. Holdeman, R., Nehrt, S. & Strome, S. MES-2, a maternal protein essential for viability of the germline in Caenorhabditis elegans, is homologous to a Drosophila Polycomb group protein. Development 125, 2457–2467 (1998).

    CAS  PubMed  Google Scholar 

  61. Kelly, W. G. & Fire, A. Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development 125, 2451–2456 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression in Drosophila: gene silencing of alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90, 479– 490 (1997).

    Article  CAS  Google Scholar 

  63. Pal-Bhadra, M., Bhadra, U. & Birchler, J. A. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99, 35–46 ( 1999).

    Article  CAS  Google Scholar 

  64. Lin, R. & Avery, L. Policing rogue genes. Nature 402, 128–129 ( 1999).

    Article  CAS  Google Scholar 

  65. Culbertson, M. R. RNA surveillance. Unforeseen consequences for gene expression, inherited genetic disorders and cancer. Trends Genet. 15, 74–80 (1999).

    Article  CAS  Google Scholar 

  66. Czaplinski, K., Ruiz-Echevarria, M. J., Gonzalez, C. I. & Peltz, S. W. Should we kill the messenger? The role of the surveillance complex in translation termination and mRNA turnover. BioEssays 21, 685–696 (1999).

    Article  CAS  Google Scholar 

  67. Hodgkin, J., Papp, A., Pulak, R., Ambros, V. & Anderson, P. A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301–313 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pulak, R. & Anderson, P. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7, 1885 –1897 (1993).

    Article  CAS  Google Scholar 

  69. Elmayan, T. et al. Arabidopsis mutants impaired in cosuppression. Plant Cell 10, 1747–1758 (1998).

    Article  CAS  Google Scholar 

  70. Dehio, C. & Schell, J. Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing. Proc. Natl Acad. Sci. USA 91, 5538–5542 (1994).

    Article  CAS  Google Scholar 

  71. Cockell, M. M. & Gasser, S. M. Nucleolar space for RENT. Curr Biol 12, R575– R576 (1999).

    Article  Google Scholar 

  72. Wickner, R. B. Prions and RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Genet. 30, 109–139 (1996).

    Article  CAS  Google Scholar 

  73. Shelton, C. A., Carter, J. C., Ellis, G. C. & Bowerman, B. The nonmuscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior-posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. J. Cell Biol. 146, 439–451 (1999).

    Article  CAS  Google Scholar 

  74. Lee, J. T., Davidow, L. S. & Warshawsky, D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nature Genet. 21, 400– 404 (1999).

    Article  CAS  Google Scholar 

  75. Wutz, A. et al. Imprinted expression of the Igf2r gene depends on an intronic CpG island. Nature 389, 745– 749 (1997).

    Article  CAS  Google Scholar 

  76. Katze, M. G. Regulation of the interferon-induced PKR: can viruses cope? Trends Microbiol. 3, 75–78 ( 1995).

    Article  CAS  Google Scholar 

  77. Vongs, A., Kakutani, T., Martienssen, R. A. & Richards, E. J. Arabidopsis thaliana DNA methylation mutants. Science 260, 1926–1928 (1993).

    Google Scholar 

  78. Mittelsten Scheid, O., Afsar, K. & Paszkowski, J. Release of epigenetic gene silencing by trans-acting mutations in Arabidopsis. Proc. Natl Acad. Sci. USA 95, 632–637 (1998).

    Article  CAS  Google Scholar 

  79. Furner, I. J., Sheikh, M. A. & Collett, C. E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149, 651–662 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ruiz, F., Vayssie, L., Klotz, C., Sperling, L. & Madeddu, L. Homology-dependent gene silencing in Paramecium. Mol. Biol. Cell 9, 931–943 (1998).

    Article  CAS  Google Scholar 

  81. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191 –3197 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Driscoll, S. Mango, C. Mello, R. Plasterk and H. Vaucheret for sharing preprints; T. Evans, A. Fire, P. Gönczy, T. Hyman, K. Kemphues, J. Rothman and A. Sugimoto for unpublished information; H. Vaucheret for useful discussions; and U. Strahle, N. Skaer and members of the M.L. laboratory for useful comments about the manuscript. J.M.B. is currently supported by a fellowship from the Fondation pour la Recherche Médicale. Our work is supported by the CNRS, INSERM, Hôpital Universitaire de Strasbourg and grants from the Association pour la Recherche sur le Cancer and the EEC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Labouesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosher, J., Labouesse, M. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol 2, E31–E36 (2000). https://doi.org/10.1038/35000102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing