Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination

An Erratum to this article was published on 30 March 2000

Abstract

Non-coding apurinic/apyrimidinic (AP) sites in DNA are continually created in cells both spontaneously and by damage-specific DNA glycosylases1. The biologically critical human base excision repair enzyme APE1 cleaves the DNA sugar-phosphate backbone at a position 5′ of AP sites to prime DNA repair synthesis2,3,4. Here we report three co-crystal structures of human APE1 bound to abasic DNA which show that APE1 uses a rigid, pre-formed, positively charged surface to kink the DNA helix and engulf the AP-DNA strand. APE1 inserts loops into both the DNA major and minor grooves and binds a flipped-out AP site in a pocket that excludes DNA bases and racemized β-anomer AP sites. Both the APE1 active-site geometry and a complex with cleaved AP-DNA and Mn2+ support a testable structure-based catalytic mechanism. Alanine substitutions of the residues that penetrate the DNA helix unexpectedly show that human APE1 is structurally optimized to retain the cleaved DNA product. These structural and mutational results show how APE1 probably displaces bound glycosylases and retains the nicked DNA product, suggesting that APE1 acts in vivo to coordinate the orderly transfer of unstable DNA damage intermediates between the excision and synthesis steps of DNA repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stereo views of simulated-annealed omit electron density for APE1–DNA complexes showing the flipped-out abasic site and phosphodiester bond cleavage.
Figure 2: Stereo views of the APE1 complex with AP-DNA showing double-loop penetration of the DNA helix, plus charge and surface complementarity.
Figure 3: APE1 interactions with the flipped-out AP site provide damage specificity and suggest a specific reaction mechanism for phosphodiester bond cleavage.
Figure 4: Activities and kinetics of wild-type and mutant human APE1 enzymes.

Similar content being viewed by others

References

  1. Lindahl,, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Wilson, D. M. & Thompson, L. H. Life without DNA repair. Proc. Natl Acad. Sci. USA 94, 12754– 12757 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Wilson, D. M., Takeshita, M., Grollman, A. P. & Demple, B. Incision activity of human apurinic endonuclease (Ape) at abasic site analogs in DNA. J. Biol. Chem. 270, 16002– 16007 (1995).

    Article  CAS  Google Scholar 

  4. Izumi, T. & Mitra, S. Deletion analysis of human AP-endonuclease: minimum sequence required for the endonuclease activity. Carcinogenesis 19, 525–527 ( 1998).

    Article  CAS  Google Scholar 

  5. Lindahl, T. & Wood, R. D. Quality control in DNA repair. Science 286, 1897–1905 ( 1999).

    Article  CAS  Google Scholar 

  6. Tsutakawa, S. E., Jingami, H. & Morikawa, K. Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Cell 99, 615–623 ( 1999).

    Article  CAS  Google Scholar 

  7. Hosfield, D. J., Guan, Y., Haas, B. J., Cunningham, R. P. & Tainer, J. A. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Cell 98, 397– 408 (1999).

    Article  CAS  Google Scholar 

  8. Gorman, M. A. et al. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J. 16, 6548–6558 (1997).

    Article  CAS  Google Scholar 

  9. Wilson, D. M., Takeshita, M. & Demple, B. Abasic site binding by the human apurinic endonuclease, Ape, and determination of the DNA contact sites. Nucleic Acids Res. 25, 933–939 ( 1997).

    Article  CAS  Google Scholar 

  10. Withka, J. M., Wilde, J. A. & Bolton, P. H. Characterization of conformational features of DNA heteroduplexes containing aldehydic abasic sites. Biochemistry 30, 9931–9940 ( 1991).

    Article  CAS  Google Scholar 

  11. Mol, C. D., Kuo, C. –F., Thayer, M. M., Cunningham, R. P. & Tainer, J. A. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 374, 381– 386 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Erzberger, J. P. & Wilson, D. M. The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: new insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J. Mol. Biol. 290, 447–457 (1999).

    Article  CAS  Google Scholar 

  13. Izumi, T. et al. Intragenic suppression of an active site mutation in the human apurinic/apyrimidinic endonuclease. J. Mol. Biol. 287 , 47–57 (1999).

    Article  CAS  Google Scholar 

  14. Kane, C. M. & Linn, S. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem. 256, 3405–3414 ( 1981).

    CAS  PubMed  Google Scholar 

  15. Masuda, Y., Bennett, R. A. & Demple, B. Dynamics of the interaction of human apurinic endonuclease (Ape1) with its substrate and product. J. Biol. Chem. 273, 30352–30359 (1998).

    Article  CAS  Google Scholar 

  16. Bennett, R. A. O., Wilson, D. M., Wong, D. & Demple, B. Interaction of human apurinic endonuclease and DNA polymerase β in the base excision repair pathway. Proc. Natl Acad. Sci. USA 94, 7166–7169 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Prasad, R. et al. Specific interaction of DNA polymerase β and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J. Biol. Chem. 271, 16000–16007 (1996).

    Article  CAS  Google Scholar 

  18. Parikh, S. S. et al. Base–excision repair initiation revealed by crystal structures and DNA–binding kinetics of human uracil–DNA glycosylase bound to DNA. EMBO J. 17, 5214– 5226 (1998).

    Article  CAS  Google Scholar 

  19. Waters, T. R., Gallinari, P., Jiricny, J. & Swann, P. F. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem. 274 , 67–74 (1999).

    Article  CAS  Google Scholar 

  20. Chen, D. S., Herman, V. & Demple, B. Two distinct human DNA diesterases that hydrolyze 3′–blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res. 19, 5907–5914 (1991).

    Article  CAS  Google Scholar 

  21. Horton, J. K., Srivastava, D. K., Zmudzka, B. Z. & Wilson, S. H. Strategic down–regulation of DNA polymerase beta by antisense RNA sensitizes mammalian cells to specific DNA damaging agents. Nucleic Acids Res. 23, 3810–3815 ( 1995).

    Article  CAS  Google Scholar 

  22. Kubota, Y. et al. Reconstitution of DNA base excision–repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J. 15, 6662–6670 (1996).

    Article  CAS  Google Scholar 

  23. Caldecott, K. W., McKeown, C. K., Tucker, J. D., Ljungquist, S. & Thompson, L. H. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14, 68–76 (1994).

    Article  CAS  Google Scholar 

  24. Takeshita, M., Chang, C. N., Johnson, F., Will, S. & Grollman, A. P. Oligodeoxynucleotides containing synthetic abasic sites. Model substrates for DNA polymerases and apurinic/apyrimidinic endonucleases. J. Biol. Chem. 262, 10171 –10179 (1987).

    CAS  PubMed  Google Scholar 

  25. Erzberger, J. P., Barsky, D., Scharer, O. D., Colvin, M. E. & Wilson, D. M. Elements in abasic site recognition by the major human and Escherichia coli apurinic/apyrimidinic endonucleases. Nucleic Acids Res. 26, 2771– 2778 (1998).

    Article  CAS  Google Scholar 

  26. Otwinowski,, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–325 ( 1997).

    Article  CAS  Google Scholar 

  27. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 ( 1994).

    Article  Google Scholar 

  28. Brünger, A. T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  ADS  Google Scholar 

  29. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140 –149 (1986).

    Article  Google Scholar 

  30. McRee, D. E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. S. Parikh, C. D. Putnam, D. S. Daniels and D. J. Hosfield for helpful discussions, and the staff and facilities at SSRL. This work was supported by the NIH, by a Laboratory Directed Research and Development grant from the Lawrence Berkeley Laboratory, by a cancer research supplement administered through LBNL from the National Cancer Institute (to J.A.T., S.M. and P. Cooper), the Skaggs Institute for Chemical Biology and a Special Fellowship from the Leukemia Society of America (to C.D.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Tainer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mol, C., Izumi, T., Mitra, S. et al. DNA-bound structures and mutants reveal abasic DNA binding by APE1 DNA repair and coordination. Nature 403, 451–456 (2000). https://doi.org/10.1038/35000249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000249

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing