Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding

Abstract

Regulatory factor X (RFX) proteins are transcriptional activators that recognize X-boxes (DNA of the sequence 5′-GTNRCC(0–3N)RGYAAC-3′, where N is any nucleotide, R is a purine and Y is a pyrimidine) using a highly conserved 76-residue DNA-binding domain (DBD). DNA-binding defects in the protein RFX5 cause bare lymphocyte syndrome or major histocompatibility antigen class II deficiency1. RFX1, -2 and -3 regulate expression of other medically important gene products (for example, interleukin-5 receptor α chain, IL-5Rα)2. Fusions of the ligand-binding domain of the oestrogen receptor with the DBD of RFX4 occur in some human breast tumours3. Here we present a 1.5 Å-resolution structure of two copies of the DBD of human RFX1 (hRFX1) binding cooperatively to a symmetrical X-box4,5. hRFX1 is an unusual member of the winged-helix subfamily of helix–turn–helix proteins6 because it uses a β-hairpin (or wing) to recognize DNA instead of the recognition helix typical of helix–turn–helix proteins. A new model for interactions between linker histones and DNA is proposed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protein and oligonucleotide sequences.
Figure 2: RFX1 and HNF-3γ DBDs.
Figure 3: Protein–DNA interactions.
Figure 4: Model for linker histone–DNA interactions.

Similar content being viewed by others

References

  1. Mach, B., Steimle, V., Martinez-Soria, E. & Reith, W. Regulation of MHC class II genes: lessons from a disease. Annu. Rev. Immunol. 14, 301–331 (1996).

    Article  CAS  Google Scholar 

  2. Iwama, A. et al. Dimeric RFX proteins contribute to the activity and lineage specificity of the interleukin-5 receptor alpha promoter through activation and repression domains. Mol. Cell Biol. 19, 3940– 3950 (1999).

    Article  CAS  Google Scholar 

  3. Dotzlaw, H., Alkhalaf, M. & Murphy, L. C. Characterization of estrogen receptor variant mRNAs from human breast cancers. Mol. Endocrinol. 6, 773–785 (1992).

    CAS  PubMed  Google Scholar 

  4. Reith, W. et al. MHC class II regulatory factor RFX has a novel DNA-binding domain and a functionally independent dimerization domain. Genes Dev. 4, 1528–1540 ( 1990).

    Article  CAS  Google Scholar 

  5. Cornille, F. et al. DNA binding properties of a chemically synthesized DNA binding domain of hRFX1. Nucleic Acids Res. 26, 2143–2149 (1998).

    Article  CAS  Google Scholar 

  6. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 ( 1993).

    Article  ADS  CAS  Google Scholar 

  7. Lai, E., Clark, K. L., Burley, S. & James E. Darnell, J. Hepatocyte nuclear factor 3/fork head or “winged helix” proteins: A family of transcription factors of diverse biological function. Proc. Natl Acad. Sci. USA 90, 10421–10423 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Emery, P. et al. A consensus motif in the RFX DNA binding domain and binding domain mutants with altered specificity. Mol. Cell Biol. 16 , 4486–4494 (1996).

    Article  CAS  Google Scholar 

  9. Ostapchuk, P., Scheirle, G. & Hearing, P. Binding of nuclear factor EF-C to a functional domain of the hepatitis B virus enhancer region. Mol. Cell Biol. 9, 2787–2797 (1989).

    Article  CAS  Google Scholar 

  10. Jin, C., Marsden, I., Chen, X. & Liao, X. Dynamic DNA contacts observed in the NMR structure of winged helix protein–DNA complex. J. Mol. Biol. 289, 683–690 (1999).

    Article  CAS  Google Scholar 

  11. Zheng, N., Fraenkel, E., Pabo, C. O. & Pavletich, N. P. Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. Genes Dev. 13, 666– 674 (1999).

    Article  CAS  Google Scholar 

  12. Janin, J. Principles of protein–protein recognition from structure to thermodynamics. Biochimie 77, 497–505 (1995).

    Article  CAS  Google Scholar 

  13. Reith, W. et al. RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol. Cell Biol. 14, 1230–1244 (1994).

    Article  CAS  Google Scholar 

  14. Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynamics 6, 63– 91 (1988).

    Article  CAS  Google Scholar 

  15. Klemm, J. D. & Pabo, C. O. Oct-1 POU domain-DNA interactions: cooperative binding of isolated subdomains and effects of covalent linkage. Genes Dev. 10, 27–36 (1996).

    Article  CAS  Google Scholar 

  16. Ramakrishnan, V., Finch, J., Graziano, V. & Sweet, R. Crystal structure of the globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Thomas, J. O. & Wilson, C. M. Selective radiolabelling and identification of a strong nucleosome binding site on the globular domain of histone H5. EMBO J. 5, 3531–3537 (1986).

    Article  CAS  Google Scholar 

  18. Buckle, R. S., Maman, J. D. & Allan, J. Site-directed mutagenesis studies on the binding of the globular domain of linker histone H5 to the nucleosome. J. Mol. Biol. 223, 651–659 (1992).

    Article  CAS  Google Scholar 

  19. Holm, L. & Sander, C. Families of structurally similar proteins, version 1. 0. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  20. Goytisolo, F. A. et al. Identification of two DNA-binding sites on the globular domain of histone H5. EMBO J. 15, 3421– 3429 (1996).

    Article  CAS  Google Scholar 

  21. Cirillo, L. A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998).

    Article  CAS  Google Scholar 

  22. Zhou, Y. B., Gerchman, S. E., Ramakrishnan, V., Travers, A. & Muyldermans, S. Position and orientation of the globular domain of linker histone H5 on the nucleosome. Nature 395, 402–405 ( 1998).

    Article  ADS  CAS  Google Scholar 

  23. Brunger, A. T. et al. Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 ( 1998).

    Article  CAS  Google Scholar 

  24. Laskowski, R. J., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a program to check stereochemical quality of protein structures. J. Appl. Cryst. 26, 283– 290 (1993).

    Article  CAS  Google Scholar 

  25. Nicholls, A., Sharp, K. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Thiel and the MacCHESS staff, and Z. Dauter and K.R. Rajashankar and the NSLS X9B staff for help with X-ray data collection. We thank C. Lenoir for assistance in peptide synthesis, and J. Bonanno, K. L. Clark, J. E. Darnell, R. C. Deo, D. Jeruzalmi, J. Kuriyan, E. Lai, H. A. Lewis, S. K. Nair and G. A. Petsko for many useful discussions. S.K.B. is an Investigator in the Howard Hughes Medical Institute. This work was supported by the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. Burley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajiwala, K., Chen, H., Cornille, F. et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403, 916–921 (2000). https://doi.org/10.1038/35002634

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002634

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing