Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p16INK4A and p19ARF act in overlapping pathways in cellular immortalization

Abstract

The INK4A locus encodes two independent but overlapping genes, p16INK4A and p19ARF, and is frequently inactivated in human cancers. The unusual structure of this locus has lead to ambiguity regarding the biological role of each gene. Here we express, in primary mouse embryonic fibroblasts (MEFs), antisense RNA constructs directed specifically towards either p16INK4A or p19ARF. Such constructs induce extended lifespan in primary MEFs; this lifespan extension is reversed upon subsequent elimination of the p16INK4A or p19ARF antisense constructs. In immortal derivatives of cell lines expressing antisense p16INK4A or p19ARF RNA, growth arrest induced by recovery of p16INK4A expression is bypassed by compromising the function of the retinoblastoma protein (Rb), whereas growth arrest induced by re-expression of p19ARF is overcome only by simultaneous inactivation of both the Rb and the p53 pathways. Thus, the physically overlapping p16INK4A and p19ARF genes act in partly overlapping pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inactivation of p19ARF and p16INK4A.
Figure 2: Inhibition of p16INK4A and p19ARF is reversible.
Figure 3: Overlapping functions of p16INK4A and p19 ARF.
Figure 4: MDM2 contributes to immortalization of MEFs.
Figure 5: E2F-1 can overcome the growth arrest induced by p19ARF in p53-null cells.
Figure 6: Analysis of p16INK4A and p19ARF messenger RNA expression in p53–/– immortalized clones.
Figure 7: Inactivation of p16INK4A or p19ARF cooperates with loss of p53 in immortalization.
Figure 8: Model of gene function in immortalization of mouse cells.

Similar content being viewed by others

References

  1. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  2. Campisi, J. The biology of replicative senescence. Eur. J. Cancer 33, 703–709 (1997).

    Article  CAS  Google Scholar 

  3. Bodnar, A. G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).

    Article  CAS  Google Scholar 

  4. Wang, J., Xie, L. Y., Allan, S., Beach, D. & Hannon, G. J. Myc activates telomerase. Genes Dev. 12, 1769–1774 (1998).

    Article  CAS  Google Scholar 

  5. Blasco, M. A. et al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91, 25– 34 (1997).

    Article  CAS  Google Scholar 

  6. Kamb, A. Cyclin-dependent kinase inhibitors and human cancer. Curr. Top. Microbiol. Immunol. 227, 139–148 ( 1998).

    CAS  PubMed  Google Scholar 

  7. Ruas, R. & Peters, G. The p16INK4A/CDKN2A tumor suppressor and its relatives. Biochem. Biophys. Acta 1378, 115–177 (1998).

    Google Scholar 

  8. Sherr, C. J. Tumour surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  Google Scholar 

  9. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91 , 649–659 (1997).

    Article  CAS  Google Scholar 

  10. Serrano, M. et al.. Role of the INK4a locus in tumor suppression and cell mortality . Cell 85, 27–37 (1996).

    Article  CAS  Google Scholar 

  11. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  Google Scholar 

  12. Zindy, F., Quelle, D. E., Roussel, M. F. & Sherr, C. J. Expression of the p16INK4A tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15, 203–211 (1997).

    Article  CAS  Google Scholar 

  13. Kiyono, T. et al. Both Rb/p16INK4A inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 ( 1998)

    Article  CAS  Google Scholar 

  14. Noble, J. R. et al. Association of extended in vitro proliferative potential with loss of p16INK4 expression. Oncogene 13, 1259–1268 (1996).

    CAS  PubMed  Google Scholar 

  15. Chin, L., Pomerantz, J. & DePinho, R. A. The INK4a/ARF tumor suppressor: one gene — two products — two pathways. Trends Biochem. Sci. 23, 291–296 (1998).

    Article  CAS  Google Scholar 

  16. Hannon, G. J. et al. Genetics in mammalian cells. Science 283, 1129–1130 (1999).

    Article  CAS  Google Scholar 

  17. Serrano, M., Gomez-Lahoz, E., DePinho, R. A., Beach, D. & Bar-Sagi, D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 267, 249–252 ( 1995).

    Article  CAS  Google Scholar 

  18. Lukas, J. et al. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375, 503– 506 (1995)

    Article  CAS  Google Scholar 

  19. Medema, R. H., Herrera, R. E., Lam, F. & Weinberg, R. A. Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc. Natl Acad. Sci. USA 92, 6289– 6293 (1995).

    Article  CAS  Google Scholar 

  20. Zhang, Y., Xiong, Y. & Yarbrough, W. G. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways . Cell 92, 725–734 (1998).

    Article  CAS  Google Scholar 

  21. Pomerantz, J. et al. The Ink 4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92, 713–723 ( 1998).

    Article  CAS  Google Scholar 

  22. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  Google Scholar 

  23. Xiao, Z. X. et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 375, 694–698 (1995).

    Article  CAS  Google Scholar 

  24. Sun, P. Q., Dong, P., Dai, K., Hannon, G. J. & Beach, D. H. p53-independent function of MDM2 may contribute to TGFβ resistance in tumors. Science 282, 2270–2272 (1998).

    Article  CAS  Google Scholar 

  25. Macleod, K. pRb and E2F-1 in mouse development and tumorigenesis. Curr. Opin. Genet. Dev. 9, 31–39 ( 1999)

    Article  CAS  Google Scholar 

  26. Johnson, D. G. & Schneider-Broussard, R. Role of E2F in cell cycle control and cancer. Frontiers Biosci. 3, 447–448 (1998).

    Article  Google Scholar 

  27. Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91 , 10918–10922 (1994).

    Article  CAS  Google Scholar 

  28. Hiebert, S. W. et al. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol. Cell. Biol. 15, 6864– 6874 (1995)

    Article  CAS  Google Scholar 

  29. Pan, H. et al. Key roles for E2F1 in signaling p53-dependent apoptosis and in cell division within developing tumors. Mol. Cell 2, 283–292 (1998).

    Article  CAS  Google Scholar 

  30. Nevins, J. R., Leone, G., DeGregori, J. & Jakoi, L. Role of the Rb/E2F pathway in cell growth control. J. Cell Physiol. 173 , 233–236 (1997)

    Article  CAS  Google Scholar 

  31. Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  32. Rittling, S. R. & Denhardt, D. T. p53 mutations in spontaneously immortalized 3T12 but not 3T3 mouse embryo cells. Oncogene 7, 935–942 ( 1992)

    CAS  PubMed  Google Scholar 

  33. Iravani, M., Dhat, R. & Price, C. M. Methylation of the multi tumor suppressor gene-2 (MTS2,CDKN1, p15INK4B) in childhood acute lymphoblasticleukemia. Oncogene 15, 2609–2614 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Brady for providing p53–/– MEFs; A. Badley for MDM2–/– p53–/– MEFs; and M. Serrano and G. Hannon for critical reading of the manuscript. A.C. is a recipient of an EMBO long-term fellowship. J.D.H. is supported by a fellowship from the Leukaemia Research Fund. J.D.H. and A.C. were also supported by the Cancer Research Campaign. D.H.B. is supported by the Hugh and Catherine Stevenson Fund and Cancer Research Campaign.

Correspondence and requests for materials should be addressed to D.H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Beach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carnero, A., Hudson, J., Price, C. et al. p16INK4A and p19ARF act in overlapping pathways in cellular immortalization. Nat Cell Biol 2, 148–155 (2000). https://doi.org/10.1038/35004020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing