Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis

Abstract

The fruit, which mediates the maturation and dispersal of seeds, is a complex structure unique to flowering plants. Seed dispersal in plants such as Arabidopsis occurs by a process called fruit dehiscence, or pod shatter. Few studies1,2,3 have focused on identifying genes that regulate this process, in spite of the agronomic value of controlling seed dispersal in crop plants such as canola4,5. Here we show that the closely related SHATTERPROOF (SHP1) and SHATTERPROOF2 (SHP2 ) MADS-box genes are required for fruit dehiscence in Arabidopsis. Moreover, SHP1 and SHP2 are functionally redundant, as neither single mutant displays a novel phenotype. Our studies of shp1 shp2 fruit, and of plants constitutively expressing SHP1 and SHP2, show that these two genes control dehiscence zone differentiation and promote the lignification of adjacent cells. Our results indicate that further analysis of the molecular events underlying fruit dehiscence may allow genetic manipulation of pod shatter in crop plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arabidopsis fruit structure and dehiscence.
Figure 2: SHP1 and SHP2 act redundantly and are required for dehiscence zone differentiation.
Figure 3: SHP1 and SHP2 promote valve margin lignification.
Figure 4: SHP1 and SHP2 regulate the expression of valve margin molecular markers.
Figure 5: Ectopic expression of SHP1 and SHP2 interferes with valve development.

Similar content being viewed by others

References

  1. Jenkins,E. S. et al. Characterization of an mRNA encoding a polygalacturonase expressed during pod development in oilseed rape (Brassica napus L.). J. Exp. Bot. 47, 111–115 (1996).

    Article  CAS  Google Scholar 

  2. Petersen,M. et al. Isolation and characterisation of a pod dehiscence zone-specific polygalacturonase from Brassica napus. Plant Mol. Biol. 31, 517–527 ( 1996).

    Article  CAS  Google Scholar 

  3. Coupe,S. A., Taylor,J. E., Isaac,P. G. & Roberts,J. A. Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.). Plant Mol. Biol. 23, 1223–1232 (1993).

    Article  CAS  Google Scholar 

  4. Child,R. D., Chauvaux,N., John,K., Ulvskov,P. & Onckelen, H. A. Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. J. Exp. Bot. 49, 829– 838 (1998).

    Article  CAS  Google Scholar 

  5. MacLeod,J. in Oilseed Rape Book 107–119 (Cambridge Agricultural, Cambridge, 1981).

    Google Scholar 

  6. Riechmann,J. L. & Meyerowitz,E. M. MADS domain proteins in plant development. J. Biol. Chem. 378, 1079–1101 (1997).

    CAS  Google Scholar 

  7. Purugganan,M. D. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol. 45, 392–396 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Bowman,J. L., Alvarez,J., Weigel,D., Meyerowitz,E. M. & Smyth, D. R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721–743 (1993).

    CAS  Google Scholar 

  9. Kempin,S. A., Savidge,B. & Yanofsky, M. F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267, 522– 525 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Ma,H., Yanofsky,M. F. & Meyerowitz, E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5, 484–495 ( 1991).

    Article  CAS  Google Scholar 

  11. Flanagan,C. A., Hu,Y. & Ma,H. Specific expression of AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10, 343–353 ( 1996).

    Article  CAS  Google Scholar 

  12. Savidge,B., Rounsley,S. D. & Yanofsky, M. F. Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7, 721–733 (1995).

    Article  CAS  Google Scholar 

  13. Spence,J. Development of the Silique of Arabidopsis thaliana. Thesis, Univ. Durham (1992).

    Google Scholar 

  14. Spence,J., Vercher,Y., Gates,P. & Harris,N. ‘Pod shatter’ in Arabidopsis thaliana, Brassica napus and B. juncea. J. Microsc. 181, 195–203 (1996).

    Article  Google Scholar 

  15. Bowman,J. L., Baum,S. F., Eshed,Y., Putterill,J. & Alvarez, J. Molecular genetics of gynoecium development in Arabidopsis . Curr. Top. Dev. Biol. 45, 155– 205 (1999).

    Article  CAS  Google Scholar 

  16. Ferrándiz,C., Pelaz,S. & Yanofsky,M. Control of carpel and fruit development in Arabidopsis. Annu. Rev. Biochem. 68, 321– 354 (1999).

    Article  Google Scholar 

  17. Rollins,R. C. The Cruciferae of Continental North America—Systematics of the Mustard Family from the Arctic to Panama (Stanford Univ. Press, Stanford, 1993).

    Google Scholar 

  18. Meakin,P. & Roberts,J. Dehiscence of fruit in oilseed rape (Brassica napus L.) I. Anatomy of pod dehiscence. J. Exp. Bot. 41, 995–1002 ( 1990).

    Article  Google Scholar 

  19. Kempin,S. A. et al. Targeted disruption in Arabidopsis. Nature 389, 802–803 ( 1997).

    Article  ADS  CAS  Google Scholar 

  20. Sundaresan,V. et al. Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev. 9, 1797–1810 (1995).

    Article  CAS  Google Scholar 

  21. Eshed,Y., Baum,S. F. & Bowman,J. L. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99, 199–209 (1999).

    Article  CAS  Google Scholar 

  22. Yanofsky,M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–40 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Rounsley,S. D., Ditta,G. S. & Yanofsky, M. F. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7, 1259– 1269 (1995).

    Article  CAS  Google Scholar 

  24. Bowman,J. L., Drews,G. N. & Meyerowitz, E. M. Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3, 749–758 (1991).

    Article  CAS  Google Scholar 

  25. Benfey,P. N. & Chua,N.-H. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250, 959–966 ( 1990).

    Article  ADS  CAS  Google Scholar 

  26. Mizukami,Y. & Ma,H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71, 119– 131 (1992).

    Article  CAS  Google Scholar 

  27. Gu,Q., Ferrándiz,C., Yanofsky, M. & Martienssen,R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517 (1998).

    CAS  PubMed  Google Scholar 

  28. Mandel,A. M. & Yanofsky,M. F. The Arabidopsis AGL8 MADS-box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7, 1763– 1771 (1995).

    Article  CAS  Google Scholar 

  29. Jack,T., Fox,G. L. & Meyerowitz, E. M. Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and post-transcriptional regulation determine floral organ identity. Cell 76, 703– 716 (1994).

    Article  CAS  Google Scholar 

  30. Blázquez,M. A., Soowal,L. N., Lee,I. & Weigel,D. LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835–3844 (1997).

    Google Scholar 

Download references

Acknowledgements

We thank C. Ferrándiz, A. Sessions, S. Kempin, A. Pinyopich, E. Alvarez-Buylla, J. Spence and N. Harris for helpful discussions; K. Feldmann and his lab for the gift of DNA and seeds from his T-DNA insertional collection; R. Martienssen for providing GT140 seed; and S. Guimil, T. Khammungkhune, C. Chien, H. Cartwright and A. Roeder for assistance with the shp1 and shp2 mutagenesis screens. This work was supported by grants from the National Science Foundation, the National Institutes of Health, Monsanto Company and the University of California BioSTAR programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin F. Yanofsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liljegren, S., Ditta, G., Eshed, Y. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis . Nature 404, 766–770 (2000). https://doi.org/10.1038/35008089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008089

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing