Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The molecular motor dynein is involved in targeting Swallow and bicoid RNA to the anterior pole of Drosophila oocytes

Abstract

Localization of bicoid (bcd) messenger RNA to the anterior pole of the Drosophila oocyte requires the exuperantia ( exu), swallow (swa) and staufen (stau) genes. We show here that Swa protein transiently co-localizes with bcd RNA in mid-oogenesis. Swa also localizes to the anterior pole of the oocyte in the absence of bcd RNA. This localization does not require Exu, but depends on intact microtubules. In mutant ovaries with duplicated polarity of microtubules, Swa and bcd RNA are ectopically localized at the posterior pole, as well as being present at the anterior pole. We identify dynein light chain-1 (Ddlc-1), a component of the minus-end-directed microtubule motor cytoplasmic dynein, as a Swa-binding protein. We propose that Swa acts as an adaptor for the dynein complex and thereby enables dynein to transport bcd RNA along microtubules to their minus ends at the anterior pole of the oocyte.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the Swa mutant proteins and the developmental profile of Swa.
Figure 2: Localization of Swa in wild-type ovaries and eggs.
Figure 3: Swa distribution in Swa mutant egg chambers can be mimicked by microtubule depolymerization.
Figure 4: Distribution of Swa protein and bcd RNA in wild-type and mutant stage-10 egg chambers.
Figure 5: Dynein light chain binds to the Swa coiled-coil domain in vivo and in vitro.

Similar content being viewed by others

References

  1. St Johnston, D. The intracellular localization of messenger RNAs. Cell 81, 161–170 (1995).

  2. van Eeden, F. & Johnston, D. S. The polarisation of the anterior-posterior and dorsal-ventral axes during Drosophila oogenesis. Curr. Opin. Genet. Dev. 9, 396–404 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Berleth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–1756 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Driever, W. & Nüsslein-Volhard, C. A gradient of Bicoid protein in Drosophila embryos. Cell 54, 83–93 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Driever, W. & Nüsslein-Volhard, C. The Bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell 54, 95–104 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Struhl, G., Struhl, K. & MacDonald, P. The gradient morphogen Bicoid is a concentration-dependent transcriptional activator. Cell 57, 1259 –1273 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Frigerio, G., Burri, M., Bopp, D., Baumgartner, S. & Noll, M. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47, 735–746 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  8. Spradling, A. The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Arias, A.) 1–70 (Cold Spring Harb. Lab. Press, Cold Spring Harbor, 1993).

  9. St Johnston, D., Driever, W., Berleth, T., Richstein, S. & Nüsslein-Volhard, C. Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte. Development 107 (Suppl.), 13–19 (1989).

    Google Scholar 

  10. Schüpbach, T. & Wieschaus, E. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux’s Arch. Dev. Biol. 195, 302–317 (1986).

    Article  Google Scholar 

  11. Frohnhöfer, H. G. & Nüsslein-Volhard, C. Maternal genes required for the anterior localization of bicoid activity in the embryo of Drosophila. Genes Dev. 1, 880–890 (1987).

    Article  Google Scholar 

  12. Macdonald, P. M., Ka-Shing, S. & Kilpatrick, M. Protein encoded by the exuperantia gene is concentrated at sites of bicoid mRNA accumulation in Drosophila nurse cells but not in oocytes or embryos. Genes Dev. 5, 2455–2466 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Wilsch-Bräuninger, M., Schwarz, H. & Nüsslein Volhard, C. A sponge-like structure involved in the association and transport of maternal products during Drosophila oogenesis . J. Cell Biol. 139, 817– 829 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang, S. & Hazelrigg, T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369, 400– 403 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Theurkauf, W. E. & Hazelrigg, T. I. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway . Development 125, 3655– 3666 (1998).

    CAS  PubMed  Google Scholar 

  16. Pokrywka, N. J. & Stephenson, E. C. Microtubules mediate the localization of bicoid RNA during Drosophila oogenesis . Development 113, 55–66 (1991).

    CAS  PubMed  Google Scholar 

  17. Pokrywka, N. J. & Stephenson, E. C. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. Dev. Biol. 167, 363– 370 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Stephenson, E. C., Chao, Y. C. & Fackenthal, J. D. Molecular analysis of the swallow gene of Drosophila-melanogaster. Genes Dev. 2, 1655–1665 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Chao, Y. C., Donahue, K. M., Pokrywka, N. J. & Stephenson, E. C. Sequence of swallow a gene required for the localization of bicoid message in Drosophila eggs. Dev. Gen. 12 , 333–341 (1991).

    Article  CAS  Google Scholar 

  20. Hegde, J. & Stephenson, E. C. Distribution of Swallow protein in egg chambers and embryos of Drosophila melanogaster. Development 119, 457–470 (1993).

    CAS  PubMed  Google Scholar 

  21. Ferrandon, D., Elphick, L., Nüsslein-Volhard, C. & St Johnston, D. Staufen protein associates with the 3’UTR of bicoid mRNA to form particles that move in a microtubule-dependent manner. Cell 79, 1221–1232 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Payre, F., Crozatier, M. & Vincent, A. Direct control of transcription of the Drosophila morphogen bicoid by the serendipity delta zinc finger protein, as revealed by in vivo analysis of a finger swap. Genes Dev. 8, 2718–2728 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Theurkauf, W., Alberts, B., Jan, Y. & Jongens, T. A central role of microtubules in the differentiation of Drosophila oocytes. Development 118, 1169–1180 (1993).

    CAS  PubMed  Google Scholar 

  24. Cooley, L. & Theurkauf, W. E. Cytoskeletal functions during Drosophila oogenesis. Science 266, 590 –595 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez-Reyes, A., Elliott, H. & St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375, 654–658 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. King, S. M. et al. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J. Biol. Chem. 271, 19358–19366 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Dick, T., Ray, K., Salz, H. K. & Chia, W. Cytoplasmic dynein (ddlc1) mutations cause morphogenetic defects and apoptotic cell death in Drosophila melanogaster. Mol. Cell. Biol. 16, 1966–1977 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Phillis, R., Statton, D., Caruccio, P. & Murphey, R. K. Mutations in the 8 kDa dynein light chain gene disrupt sensory axon projections in the Drosophila imaginal CNS. Development 122, 2955–2963 ( 1996).

    CAS  PubMed  Google Scholar 

  29. Vallee, R. B. & Sheetz, M. P. Targeting of motor proteins. Science 271, 1539–1544 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  30. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Whittaker, K. L., Ding, D., Fisher, W. W. & Lipshitz, H. D. Different 3’ untranslated regions target alternatively processed hu-li tai shao (hts) transcripts to distinct cytoplasmic locations during Drosophila oogenesis. J. Cell Sci. 112, 3385–3398 (1999).

    CAS  PubMed  Google Scholar 

  32. Ferrandon, D., Koch, I., Westhof, E. & Nüsslein-Volhard, C. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3’ UTR-Staufen ribonucleoprotein particles. EMBO J. 16, 1751–1758 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karki, S. & Holzbaur, E. L. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr. Opin. Cell. Biol. 11, 45–53 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  34. Holleran, E. A., Karki, S. & Holzbaur, E. L. The role of the dynactin complex in intracellular motility. Int. Rev. Cytol. 182, 69– 109 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. McGrail, M. et al. Regulation of cytoplasmic dynein function in vivo by the Drosophila Glued complex. J. Cell. Biol. 131, 411–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Grosshans, J., Schnorrer, F. & Nüsslein-Volhard, C. Oligomerisation of Tube and Pelle leads to nuclear localisation of Dorsal. Mech. Dev. 81, 127–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Lupas, A. Coiled coils: New structures and new functions. Trends Biochem. Sci. 21, 375–382 ( 1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Knaut, S. Luschnig, C. Bökel, J. Müller and J. Großhans for discussions and suggestions; S. King for the anti-Ddlc-1 antibody; J. Shulman for an in situ hybridization protocol; and D. Gilmour, H. Knaut and J. Müller for comments on the manuscript.

Correspondence and requests for materials should be addressed to F.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Schnorrer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnorrer, F., Bohmann, K. & Nüsslein-Volhard, C. The molecular motor dynein is involved in targeting Swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat Cell Biol 2, 185–190 (2000). https://doi.org/10.1038/35008601

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008601

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing