Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cargo binding and regulatory sites in the tail of fungal conventional kinesin

Abstract

Here, using a quantitative in vivo assay, we map three regions in the carboxy terminus of conventional kinesin that are involved in cargo association, folding and regulation, respectively. Using C-terminal and internal deletions, point mutations, localization studies, and an engineered ‘minimal’ kinesin, we identify five heptads of a coiled-coil domain in the kinesin tail that are necessary and sufficient for cargo association. Mutational analysis and in vitro ATPase assays highlight a conserved motif in the globular tail that is involved in regulation of the motor domain; a region preceding this motif participates in folding. Although these sites are spatially and functionally distinct, they probably cooperate during activation of the motor for cargo transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rescue of the kinesin-null phenotype and immunolocalization of Myc-tagged kinesin constructs.
Figure 2: Point mutations in the cargo-binding region, and ‘minimal’ kinesin.
Figure 3: Mutants exhibiting kinesin accumulation at hyphal tips.
Figure 4: Summary of the functional features of kinesin tail domains and the effects of the mutations studied here.

Similar content being viewed by others

References

  1. Howard, J. The movement of kinesin along microtubules. Annu. Rev. Physiol. 58, 703–729 ( 1996).

    Article  CAS  Google Scholar 

  2. Vale, R. D. & Fletterick, R. The design plan of kinesin motors . Annu. Rev. Cell Dev. Biol. 13, 745– 777 (1997).

    Article  CAS  Google Scholar 

  3. Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985).

    Article  CAS  Google Scholar 

  4. Brady, S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317, 73–75 (1985).

    Article  CAS  Google Scholar 

  5. Scholey, J. M., Porter, M. E., Grissom, P. M. & McIntosh, J. R. Identification of kinesin in sea urchin eggs and evidence for its localization in the mitotic spindle. Nature 318, 483– 486 (1985).

    Article  CAS  Google Scholar 

  6. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport . Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  7. Amos, L. A. Kinesin from pig brain studied by electron microscopy. J. Cell Sci. 87, 105–111 ( 1987).

    CAS  PubMed  Google Scholar 

  8. Hirokawa, N. et al. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell 56, 867–878 (1989).

    Article  CAS  Google Scholar 

  9. Diefenbach, R. J., Mackkay, J. P., Armati, P. J. & Cunningham, A. L. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663–16670 ( 1998).

    Article  CAS  Google Scholar 

  10. Yang, J. T., Saxton, W. M., Stewart, R. J., Raff, E. C. & Goldstein, L. S. B. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science 249, 42–47 ( 1990).

    Article  CAS  Google Scholar 

  11. Gindhart, J. G., Desai, C. J., Beushausen, S., Zinn, K. & Goldstein, L. S. B. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443–454 ( 1998).

    Article  CAS  Google Scholar 

  12. Verhey, K. J. et al. Light-chain-dependent regulation of kinesin’s interaction with microtubules. J. Cell Biol. 143, 1053 –1066 (1998).

    Article  CAS  Google Scholar 

  13. Rahman, A., Kamal, A., Roberts, E. A. & Goldstein, L. S. Defective kinesin heavy chain behavior in mouse kinesin light chain mutants . J. Cell Biol. 146, 1277– 1288 (1999).

    Article  CAS  Google Scholar 

  14. Steinberg, G. & Schliwa, M. The Neurospora organelle motor: a distant relative of conventional kinesin with unconventional properties . Mol. Biol. Cell 6, 1605– 1618 (1995).

    Article  CAS  Google Scholar 

  15. Lehmler, C. et al. Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J. 16, 3464–3473 (1997).

    Article  CAS  Google Scholar 

  16. Steinberg, G. A kinesin-like mechanoenzyme from the zygomycete Syncephalastrum racemosum shows biochemical similarities with conventional kinesin from Neurospora crassa. Eur. J. Cell Biol. 73, 124– 131 (1997).

    CAS  PubMed  Google Scholar 

  17. Wu, Q. et al. A fungal kinesin required for organelle motility, hyphal growth and morphogenesis. Mol. Biol. Cell 9, 89–101 (1998).

    Article  CAS  Google Scholar 

  18. Woehlke, G., Ruby, A. K., Hart, C. L., Hom-Booher, N. & Vale, R. D. Microtubule interaction site of the kinesin motor . Cell 90, 207–216 (1997).

    Article  CAS  Google Scholar 

  19. Kuznetsov, S. A., Vaisberg, Y. A., Rothwell, S. W., Murphy, D. B. & Gelfand, V. I. Isolation of a 45 kDa fragment from the kinesin heavy chain with enhanced ATPase and microtubule binding affinities. J. Biol. Chem. 264, 589– 595 (1989).

    CAS  PubMed  Google Scholar 

  20. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778– 784 (1999).

    Article  CAS  Google Scholar 

  21. Case, R. B., Pierce, D. W., Hom-Booher, N., Hart, C. L. & Vale, R. D. The directional preference of kinesin motors is specified by an element outside of the motor catalytic domain. Cell 90, 959–966 ( 1997).

    Article  CAS  Google Scholar 

  22. Henningsen, U. & Schliwa, M. Reversal in the direction of movement of a molecular motor. Nature 389, 93–96 (1997).

    Article  CAS  Google Scholar 

  23. Endow, S. A. & Waligora, K. W. Determinants of kinesin motor polarity. Science 281, 1200– 1202 (1998).

    Article  CAS  Google Scholar 

  24. Romberg, L., Pierce, D. W. & Vale, R. D. Role of the kinesin neck region in processive microtubule-based motility. J. Cell Biol. 140, 1407– 1416 (1998).

    Article  CAS  Google Scholar 

  25. Grummt, M. et al. Importance of a flexible hinge near the motor domain in kinesin -driven motility. EMBO J. 17, 5536– 5542 (1998).

    Article  CAS  Google Scholar 

  26. Stock, M. F. et al. Formation of the compact confomer of kinesin requires a COOH-terminal heavy chain domain and inhibits microubule-stimulated ATPase activity. J. Biol. Chem. 274, 14617–14623 (1999).

    Article  CAS  Google Scholar 

  27. Coy, D. L., Hancock, W. O., Wagenbach, M. & Howard, J. Kinesin’s tail domain is an inhibitory regulator of the motor domain . Nature Cell Biol. 1, 288– 292 (1999).

    Article  CAS  Google Scholar 

  28. Friedman, D. S. & Vale, R. D. Single-molecule analysis of kinesin motility reveals regulation by the cargo-binding tail domain. Nature Cell Biol. 1, 293– 297 (1999).

    Article  CAS  Google Scholar 

  29. Hackney, D. D., Levitt, J. D. & Suhan. J. Kinesin undergoes a 9S to 6S conformational transition. J. Biol. Chem. 267, 8696–8701 (1992).

    CAS  PubMed  Google Scholar 

  30. Kirchner, J., Seiler, S., Fuchs, S., & Schliwa, M. Functional anatomy of the kinesin molecule in vivo. EMBO J. 18, 4404–4413 (1999).

    Article  CAS  Google Scholar 

  31. Bloom, G. S. & Endow, S. A. Motor proteins 1: kinesins. Protein Profile 2, 105–171 (1995).

    Google Scholar 

  32. Lane, J. & Allan, V. Microtubule-based membrane movement . Biochim. Biophys. Acta 1376, 27– 55 (1998).

    Article  CAS  Google Scholar 

  33. Goldstein, L. S. B. With apologies to Sheherazade: tails of 1001 kinesin motors. Annu. Rev. Genet. 27, 319–351 (1993).

    Article  CAS  Google Scholar 

  34. Skoufias, D. A., Cole, D. G., Wedaman, K. P. & Scholey, J. M. The carboxy-terminal domain of kinesin heavy chain is important for membrane binding. J. Biol. Chem. 269, 1477– 1485 (1994).

    CAS  PubMed  Google Scholar 

  35. Pfister, K. K., Wagner, M. C., Stenoien, D. L., Brady, S. T. & Bloom, G. S. Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J. Cell Biol. 108, 1453 –1463 (1989).

    Article  CAS  Google Scholar 

  36. Hirokawa, N. et al. Kinesin associates with anterogradely transported membraneous organelles in vivo. J. Cell Biol. 114 , 295–302 (1991).

    Article  CAS  Google Scholar 

  37. Wright, B. D. et al. Subcellular localization and sequence of sea urchin kinesin heavy chain — evidence for its association with membranes in the mitotic apparatus and interphase cytoplasm. J. Cell Biol. 113 , 817–833 (1991).

    Article  CAS  Google Scholar 

  38. Seiler, S., Plamann, M. & Schliwa, M. Kinesin and dynein mutants provide novel insights into the roles of vesicle traffic during cell morphogenesis in Neurospora. Curr. Biol. 9, 779–785 ( 1999).

    Article  CAS  Google Scholar 

  39. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations . Proc. Natl Acad. Sci. USA 92, 8259– 8263 (1995).

    Article  CAS  Google Scholar 

  40. Jellali, A. et al. Structural and biochemical properties of kinesin heavy chain associated with rat brain mitochondria. Cell Motil. Cytoskeleton 28, 79–93 ( 1994).

    Article  CAS  Google Scholar 

  41. Yu H., Toyoshima I., Steuer E. R. & Sheetz M. P. Kinesin and cytoplasmic dynein binding to brain microsomes. J. Biol. Chem. 267, 20457–20464 (1992).

  42. Schnapp, B. J., Reese, T. S. & Bechtold, R. Kinesin is bound with high affinity to squid axon organelles that move to the plus end of microtubules. J. Cell Biol. 119, 389–399 (1992).

    Article  CAS  Google Scholar 

  43. Leopold, P. L., McDowall, A. W., Pfister, K. K., Bloom, G. S. & Brady, S. T. Association of kinesin with characterized membrane-bound organelles. Cell Motil. Cytoskeleton 23, 19–33 (1992).

    Article  CAS  Google Scholar 

  44. Seiler, S., Nargang, F., Steinberg, G. & Schliwa, M. Kinesin is essential for cell morphogenesis and polarized secretion in Neurospora crassa. EMBO J. 16, 3025– 3034 (1997).

    Article  CAS  Google Scholar 

  45. Stenoien, D. S. & Brady, S. T. Immunochemical analysis of kinesin light chain function. Mol. Biol. Cell 146, 1277–1288 (1997).

    Google Scholar 

  46. Kirchner, J., Woehlke, G. & Schliwa, M. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal kinesins. Biol. Chem. 380, 915–921 (1999).

    Article  CAS  Google Scholar 

  47. Lane, J. D. & Allan, V. J. Microtubule-based endoplasmic reticulum motility in Xenopus laevis: activation of membrane-associated kinesin during development. Mol. Biol. Cell. 10, 1909–1922 (1999).

    Article  CAS  Google Scholar 

  48. Tinsley, J. H., Minke, P. F., Bruno, K. S. & Plamann, M. p150 Glued, the largest subunit of the dynactin complex, is nonessential in Neurospora but required for nuclear distribution. Mol. Biol. Cell 7, 731–742 ( 1996).

    Article  CAS  Google Scholar 

  49. Evan, G. I., Lewis, G. K., Ramsey, G. & Bishop, J. M. Isolation of monoclonal antibodies specific for human cMyc-proto-oncogene product . Mol. Cell. Biol. 5, 3610– 3616 (1985).

    Article  CAS  Google Scholar 

  50. Huang, T. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in E. coli. Purification and kinetic characterization . J. Biol. Chem. 269, 16493– 16501 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Fuchs for technical assistance and U. Euteneuer for critical reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft, the Volkswagen Stiftung and the Fonds der Chemischen Industrie.

Correspondence and requests for materials should be addressed to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Schliwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, S., Kirchner, J., Horn, C. et al. Cargo binding and regulatory sites in the tail of fungal conventional kinesin. Nat Cell Biol 2, 333–338 (2000). https://doi.org/10.1038/35014022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing