Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the γ-tubulin ring complex: a template for microtubule nucleation

Abstract

The γ-tubulin ring complex (γTuRC) is a protein complex of relative molecular mass ~2.2 × 106 that nucleates microtubules at the centrosome. Here we use electron-microscopic tomography and metal shadowing to examine the structure of isolated Drosophila γTuRCs and the ends of microtubules nucleated by γTuRCs and by centrosomes. We show that the γTuRC is a lockwasher-like structure made up of repeating subunits, topped asymmetrically with a cap. A similar capped ring is also visible at one end of microtubules grown from isolated γTuRCs and from centrosomes. Antibodies against γ-tubulin label microtubule ends, but not walls, in centrosomes. These data are consistent with a template-mediated mechanism for microtubule nucleation by the γTuRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of isolated γ-TuRCs.
Figure 2: Reconstructions of isolated γ-TuRCs in complex with microtubules.
Figure 3: Comparison of ring-wall widths in γ-TuRCs labelled with anti-γ-tubulin antibody and in unlabelled γ-TuRCs.
Figure 4: Reconstructions of microtubule origins in intact centrosomes.
Figure 5: Model for microtubule nucleation by the ‘template’ action of the γ-TuRC.

Similar content being viewed by others

References

  1. Moritz, M. et al. Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 130, 1149–1159 (1995).

    Article  CAS  Google Scholar 

  2. Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B. M. & Agard, D. A. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638 –640 (1995).

    Article  CAS  Google Scholar 

  3. Vogel, J. M., Stearns, T., Rieder, C. L. & Palazzo, R. E. Centrosomes isolated from Spisula solidissima oocytes contain rings and an unusual stoichiometric ratio of α/β-tubulin. J. Cell Biol. 137, 193–202 (1997).

  4. Gould, R. R. & Borisy, G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J. Cell. Biol. 73, 601–615 (1977).

    Article  CAS  Google Scholar 

  5. Pereira, G. & Schiebel, E. Centrosome–microtubule nucleation . J Cell Sci 110, 295–300 (1997).

    CAS  PubMed  Google Scholar 

  6. Wiese, C. & Zheng, Y. γ-Tubulin complexes and their interaction with microtubule-organizing centers. Curr. Opin. Struct. Biol. 9, 250–259 ( 1999).

    Article  CAS  Google Scholar 

  7. Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. A γ tubulin ring complex purified from the unfertilized egg of Xenopus laevis can nucleate microtubule assembly in vitro. Nature 378, 578–583 (1995).

    Article  CAS  Google Scholar 

  8. Erickson, H. P. & Stoffler, D. Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to α-, β- and γ-tubulin. J. Cell Biol. 135, 5–8 (1996).

    Article  CAS  Google Scholar 

  9. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    Article  CAS  Google Scholar 

  10. Heuser, J. Protocol for 3-D visualization of molecules on mica via the quick-freeze, deep-etch technique. J. Electron Microsc. Technique 13, 244–263 (1989).

    Article  CAS  Google Scholar 

  11. Heuser, J. Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol. 22 , 97–122 (1981).

    Article  CAS  Google Scholar 

  12. Moritz, M., Zheng, Y., Alberts, B. M. & Oegema, K. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775–786 (1998).

    Article  CAS  Google Scholar 

  13. Erickson, H. P. Microtubule surface lattice and subunit structure and observations on reassembly . J. Cell Biol. 60, 153– 167 (1974).

    Article  CAS  Google Scholar 

  14. Kirschner, M. W., Honig, L. S. & Williams, R. C. Quantitative electron microscopy of microtubule assembly in vitro. J. Mol. Biol. 99, 263– 276 (1975).

    Article  CAS  Google Scholar 

  15. Detrich, H. W. D., Jordan, M. A., Wilson, L. & Williams, R. C. Mechanism of microtubule assembly. Changes in polymer structure and organization during assembly of sea urchin egg tubulin. J. Biol. Chem. 260, 9479–9490 (1985).

    CAS  PubMed  Google Scholar 

  16. Simon, J. R. & Salmon, E. D. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J. Cell Sci. 96, 571–582 (1990).

    CAS  PubMed  Google Scholar 

  17. Chretien, D., Fuller, S. D. & Karsenti, E. Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates. J. Cell Biol. 129, 1311–1328 (1995).

    Article  CAS  Google Scholar 

  18. Nogales, E., Wolf, S. G. & Downing, K. H. Structure of the α/β-tubulin dimer by electron crystallography. Nature 391, 199– 203 (1998).

    Article  CAS  Google Scholar 

  19. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  20. Murphy, S. M., Urbani, L. & Stearns, T. The mammalian gamma-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    Article  CAS  Google Scholar 

  21. Knop, M., Pereira, G., Geissler, S., Grein, K. & Schiebel, E. The spindle pole body component Spc97p interacts with the gamma-tubulin of Saccharomyces cerevisiae and functions in microtubule organization and spindle pole body duplication . EMBO J. 16, 1550–1564 (1997).

    Article  CAS  Google Scholar 

  22. Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16, 6985– 6995 (1997).

    Article  CAS  Google Scholar 

  23. Tilney, L.G. et al. Microtubules: evidence for 13 protofilaments. J. Cell Biol. 59, 267–275 (1973).

    Article  CAS  Google Scholar 

  24. Evans, L., Mitchison, T. & Kirschner, M. Influence of the centrosome on the structure of nucleated microtubules. J. Cell Biol. 100, 1185– 1191 (1985).

    Article  CAS  Google Scholar 

  25. Pierson, G. B., Burton, P. R. & Himes, R. H. Alterations in number of protofilaments in microtubules assembled in vitro. J. Cell Biol. 76, 223–228 (1978).

    Article  CAS  Google Scholar 

  26. Böhm, K. J., Vater, W., Fenske, H. & Unger, E. Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro . Biochim. Biophys. Acta 800, 119– 126 (1984).

    Article  Google Scholar 

  27. Chretien, D., Metoz, F., Verde, F., Karsenti, E. & Wade, R. H. Lattice defects in microtubules: protofilament numbers vary within individual microtubules. J. Cell Biol. 117, 1031–1040 (1992).

    Article  CAS  Google Scholar 

  28. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  29. Byers, B., Shriver, K. & Goetsch, L. The role of spindle pole bodies and modified microtubule ends in the initiation of microtubule assembly in Sacchoromyces cerevisiae . J. Cell Sci. 30, 331– 352 (1978).

    CAS  PubMed  Google Scholar 

  30. Bullitt, E., Rout, M. P., Kilmartin, J. V. & Akey, C. W. The yeast spindle pole body is assembled around a central crystal of Spc42p . Cell 89, 1077–1086 (1997).

    Article  CAS  Google Scholar 

  31. O’Toole, E. T., Winey, M. & McIntosh, J. R. High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae . Mol. Biol. Cell 10, 2017– 2031 (1999).

    Article  Google Scholar 

  32. Kilmartin, J. V. & Goh, P. Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J. 15, 4592– 4602 (1996).

    Article  CAS  Google Scholar 

  33. Kilmartin, J. V., Dyos, S. L., Kershaw, D. & Finch, J. T. A spacer protein in the Saccharomyces cerevisiae spindle pole body whose transcript is cell cycle-regulated. J. Cell Biol. 123,1175–1184 (1993).

  34. Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967–977 ( 1998).

    Article  CAS  Google Scholar 

  35. Moritz, M. & Alberts, B. M. in Methods in Cell Biology (ed. Rieder, C.L.) Vol. 61, 1–12 (Academic Press, San Diego, 1999).

  36. Harris, J., Gerber, M., Gebauer, W., Wernicke, W. & Markl, J. Negative Stains containing trehalose: application to tubular and filamentous structures. J. Microsc. Soc. Am. 2, 43–52 (1996).

  37. Koster, A. J., Chen, H., Sedat, J. W. & Agard, D. A. Automated microscopy for electron tomography. Ultramicroscopy 46, 207–227 (1992).

    Article  CAS  Google Scholar 

  38. Koster, A. J. et al. Towards automatic three-dimensional imaging of large biological structures using intermediate voltage electron microscopy. Microsc. Soc. Am. Bull. 23, 176–188 (1993).

    Google Scholar 

  39. Chen, H., Clyborne, W., Sedat, J. W. & Agard, D. A. Prism: an integrated system for display and analysis of three-dimensional microscopy images. SPIE: Biomedical Image Processing and 3D Microsc. 1660, 784–790 ( 1992).

    Google Scholar 

  40. Chen, H., Sedat, J. W. & Agard, D. A. in Handbook of Biological Confocal Microscopy. (ed. Pawley, J.) 141–150 (Plenum, New York, 1990).

Download references

Acknowledgements

We thank C. Wiese and Y. Zheng for help with γTuRC preparations, H. Aldaz for suggesting the EZ-link biotin for antibody labelling, T. Keating for sharing data before publication and for advice on the manuscript, B. Keszthelyi for development of improved image reconstruction approaches, R. McQuity for improved software for automated tomography and T. Mitchison for part of M. M.’s salary. This work was supported by the Howard Hughes Medical Institute and NIH grants GM 31627 (to D.A.A.) and GM23928-22 (to T.M.).

Correspondence and requests for materials should be addressed to M.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Moritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moritz, M., Braunfeld, M., Guénebaut, V. et al. Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2, 365–370 (2000). https://doi.org/10.1038/35014058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing