Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrasensitive pheromone detection by mammalian vomeronasal neurons

An Erratum to this article was published on 30 November 2000

Abstract

The vomeronasal organ (VNO) is a chemoreceptive organ that is thought to transduce pheromones into electrical responses that regulate sexual, hormonal and reproductive function in mammals1,2,3,4,5. The characteristics of pheromone signal detection by vomeronasal neurons remain unclear3,5. Here we use a mouse VNO slice preparation to show that six putative pheromones evoke excitatory responses in single vomeronasal neurons, leading to action potential generation and elevated calcium entry. The detection threshold for some of these chemicals is remarkably low, near 10-11 M, placing these neurons among the most sensitive chemodetectors in mammals. Using confocal calcium imaging, we map the epithelial representation of the pheromones to show that each of the ligands activates a unique, nonoverlapping subset of vomeronasal neurons located in apical zones of the epithelium. These neurons show highly selective tuning properties and their tuning curves do not broaden with increasing concentrations of ligand, unlike those of receptor neurons in the main olfactory epithelium. These findings provide a basis for understanding chemical signals that regulate mammalian communication and sexual behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pheromone-induced excitatory electrical responses in VNO.
Figure 2: Pheromone-induced Ca2+ elevations in single VNs.
Figure 3: Spatial representation of functional, pheromone-induced activity in VNO.
Figure 4: Chemoselectivity of VNs.

Similar content being viewed by others

References

  1. Halpern, M. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10, 325–362 (1987).

    Article  CAS  Google Scholar 

  2. Wysocki, C. J. & Meredith, M. in Neurobiology of Taste and Smell (eds Finger, T. E. & Silver, W. L.) 125– 150 (Wiley & Sons, New York, 1987).

    Google Scholar 

  3. Keverne, E. B. The vomeronasal organ. Science 286, 716– 723 (1999).

    Article  CAS  Google Scholar 

  4. Bargmann, C. I. Olfactory receptors, vomeronasal receptors, and the organization of olfactory information. Cell 90, 585– 587 (1997).

    Article  CAS  Google Scholar 

  5. Tirindelli, R., Mucignat-Caretta, C. & Ryba, N. J. P. Molecular aspects of pheromonal communication via the vomeronasal organ of mammals. Trends Neurosci. 21, 482–486 (1998).

    Article  CAS  Google Scholar 

  6. Novotny, M. V., Jemiolo, B., Harvey, S., Wiesler, D. & Marchlewska-Koj, A. Adrenal-mediated endogenous metabolites inhibit puberty in female mice. Science 231, 722– 725 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Jemiolo, B., Harvey, S. & Novotny, M. V. Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. Proc. Natl Acad. Sci. USA 83, 4576–4579 ( 1986).

    Article  ADS  CAS  Google Scholar 

  8. Novotny, M. V., Ma, W., Wiesler, D. & Zidek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatiles associating with the major urinary protein. Proc. R. Soc. Lond. B 266, 2017–2022 (1999).

    Article  CAS  Google Scholar 

  9. Jemiolo, B., Andreolini, F., Xie, T.-M., Wiesler, D. & Novotny, M. V. Puberty-affecting synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus. Physiol. Behav. 46, 293–298 (1989).

    Article  CAS  Google Scholar 

  10. Novotny, M. V. et al. A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. Chem. Biol. 6, 377–383 ( 1999).

    Article  CAS  Google Scholar 

  11. Inamura, K., Kashiwayanagi, M. & Kurihara, K. Inositol-1,4,5-triphosphate induces responses in receptor neurons in rat vomeronasal sensory slices. Chem. Senses 22, 93–103 (1997).

    Article  CAS  Google Scholar 

  12. Restrepo, D., Okada, Y. & Teeter, J. H. Odorant-regulated Ca2+ gradients in rat olfactory neurons. J. Gen. Physiol. 102, 907–924 (1993).

    Article  CAS  Google Scholar 

  13. Bozza, T. C. & Kauer, J. S. Odorant response properties of convergent olfactory receptor neurons. J. Neurosci. 18, 4560–4569 (1998).

    Article  CAS  Google Scholar 

  14. Leinders-Zufall, T., Greer, C. A., Shepherd, G. M. & Zufall, F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J. Neurosci. 18, 5630–5639 (1998).

    Article  CAS  Google Scholar 

  15. Dulac, C. & Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    Article  CAS  Google Scholar 

  16. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763– 773 (1997).

    Article  CAS  Google Scholar 

  17. Matsunami, I. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  Google Scholar 

  18. Ryba, N. J. P. & Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron 19, 371–379 (1997).

    Article  CAS  Google Scholar 

  19. Jia, C. & Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G protein (Giα2 and Goα) and segregated projections to the accessory olfactory bulb. Brain Res. 719, 117–128 ( 1996).

    Article  CAS  Google Scholar 

  20. Berghard, A. & Buck, L. Sensory transduction in vomeronasal neurons: evidence for G α 0, G α i2, and adenylyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16, 909– 918 (1996).

    Google Scholar 

  21. Kauer, J. S. Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci. 14, 79–85 (1991).

    Article  CAS  Google Scholar 

  22. Mori, K. & Yoshihara, Y. Molecular recognition and olfactory processing in the mammalian olfactory system. Prog. Neurobiol. 45, 585–620 ( 1995).

    Article  CAS  Google Scholar 

  23. Duchamp-Viret, P., Chaput, M. A. & Duchamp, A. Odor response properties of rat olfactory receptor neurons. Science 284, 2171–2174 (1999).

    Article  CAS  Google Scholar 

  24. Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713– 723 (1999).

    Article  CAS  Google Scholar 

  25. Hildebrand, J. G. & Shepherd, G. M. Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20, 595– 631 (1997).

    Article  CAS  Google Scholar 

  26. Zidek, L., Joo, A., Ma, W., Miao, Z. & Novotny, M. V. 4,5-dihydrothiazoles exhibit no correlations between their puberty-acceleration and activity for soluble binding proteins in the house mouse. Chem. Senses (submitted).

  27. Rodriguez, I., Feinstein, P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    Article  CAS  Google Scholar 

  28. Belluscio, L., Koentges, G., Axel, R. & Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell 97 , 209–220 (1999).

    Article  CAS  Google Scholar 

  29. Leinders-Zufall, T., Rand, M. N., Shepherd, G. M., Greer, C. A. & Zufall, F. Calcium entry through cyclic nucleotide-gated channels in individual cilia of olfactory receptor cells: spatiotemporal dynamics. J. Neurosci. 17, 4136– 4148 (1997).

    Article  CAS  Google Scholar 

  30. Novotny, M., Schwende, F. J., Wiesler, D., Jorgenson, J. W. & Carmack, M. Identification of a testosterone-dependent unique volatile constituent of male mouse urine: 7-exo-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]-3-octene. Experientia 40, 217–219 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the NIH to T.L.-Z., M.V.N., M.T.S. and F.Z., and by an intramural grant from the University of Maryland (F.Z.). A.P.L. was a recipient of an NIDCD training grant. We thank R. Bock for programming spike analysis software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Zufall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinders-Zufall, T., Lane, A., Puche, A. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405, 792–796 (2000). https://doi.org/10.1038/35015572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015572

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing