Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Compromised HOXA5 function can limit p53 expression in human breast tumours

Abstract

Expression of the p53 gene protects cells against malignant transformation1,2. Whereas control of p53 degradation has been a subject of intense scrutiny, little is known about the factors that regulate p53 synthesis1,2. Here we show that p53 messenger RNA levels are low in a large proportion of breast tumours. Seeking potential regulators of p53 transcription, we found consensus HOX binding sites3,4 in the p53 promoter5. Transient transfection of Hox/HOXA5 activated the p53 promoter. Expression of HOXA5 in epithelial cancer cells expressing wild-type p53, but not in isogenic variants lacking the p53 gene6, led to apoptotic cell death. Moreover, breast cancer cell lines and patient tumours display a coordinate loss of p53 and HOXA5 mRNA and protein expression. The HOXA5 promoter region was methylated in 16 out of 20 p53-negative breast tumour specimens. We conclude that loss of expression of p53 in human breast cancer may be primarily due to lack of expression of HOXA5.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human breast cancers express low levels of p53 and HOXA5 mRNA.
Figure 2: Mouse and human HOXA5 transactivate the p53 promoter.
Figure 3: HOXA5 upregulates p53 levels and initiates an apoptotic death pathway in breast cancer cells.
Figure 4: HOXA5 induces cell death in p53+/+ cells but not in p53-/- cells.
Figure 5: Loss of HOXA5 expression in breast cancer-gene silencing by methylation.

Similar content being viewed by others

References

  1. Prives, C. & Hall, P. A. The p53 pathway. J. Pathol. 187, 112–126 ( 1999).

    Article  CAS  Google Scholar 

  2. Reisman, D. & Loging, W. T. Transcriptional regulation of the p53 tumor suppressor gene. Semin. Cancer Biol. 8, 317–324 (1998).

    Article  CAS  Google Scholar 

  3. Pellerin, I., Schnabel, C., Catron, K. M. & Abate, C. Hox proteins have different affinities for a consensus DNA site that correlate with the positions of their genes on the hox cluster. Mol. Cell. Biol. 14, 4532–4545 ( 1994).

    Article  CAS  Google Scholar 

  4. Zhao, J. J., Lazzarini, R. A. & Pick, L. Functional dissection of the mouse Hox-a5 gene. EMBO J. 15, 1313–1322 ( 1996).

    Article  CAS  Google Scholar 

  5. Reisman, D., Greenberg, M. & Rotter, V. Human p53 oncogene contains one promoter upstream of exon 1 and a second, stronger promoter within intron 1. Proc. Natl Acad. Sci. USA 85, 5146–5150 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  7. Pharoah, P. D. P., Day, N. E. & Caldas, C. Somatic mutations in the p53 gene and prognosis in breast cancer: a meta-analysis. Brit. J. Cancer 80, 1968–1973 (1999).

    Article  CAS  Google Scholar 

  8. Deschamps, J. & Meijlink, F. Mammalian homeobox genes in normal development and neoplasia. Crit. Rev. Oncog. 3, 117–173 (1992).

    CAS  PubMed  Google Scholar 

  9. Scott, M. P. Hox genes, arms and the man. Nature Genet. 15, 117–118 (1997).

    Article  CAS  Google Scholar 

  10. Cillo, C. et al. Hox gene expression in normal and neoplastic human kidney. Int. J. Cancer 51, 892–897 (1992).

    Article  CAS  Google Scholar 

  11. De Vita, G. et al. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur. J. Cancer 6, 887 –893 (1993).

    Article  Google Scholar 

  12. Care, A. et al. HOXB7 constitutively activates fibroblast growth factor in melanomas. Mol. Cell. Biol. 16, 4842– 4851 (1996).

    Article  CAS  Google Scholar 

  13. Chariot, A., & Castronovo, V. Detection of HOXA1 expression in human breast cancer. Biochem. Biophys. Res. Commun. 222, 292-297 (1996).

    Article  Google Scholar 

  14. Cillo, C., Faiella, A., Cantile, M. & Boncinelli, E. Homeobox genes and cancer. Exp. Cell. Res. 248, 1– 9 (1999).

    Article  CAS  Google Scholar 

  15. Snedecor G. W. & Cochran, W. G. Statistical Methods (Iowa State Univ. Press, Ames, 1982).

    MATH  Google Scholar 

  16. Li, F. et al. Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J. Biol. Chem. 272, 30299–30305 (1997).

    Article  CAS  Google Scholar 

  17. Larochelle, C., Tremblay, M., Bernier, D., Aubin, J. & Jeanotte, L. Multiple cis-acting regions are required for restricted spatio-temporal Hoxa5 gene expression. Dev. Dyn. 214, 127–140 ( 1999).

    Article  CAS  Google Scholar 

  18. Aubin, J., Lemieux, M., Tremblay, M., Behringer, R. R. & Jeanotte, L. Transcriptional interferences at the Hoxa4/Hoxa5 locus: importance of correct Hoxa5 expression for proper specification of the axial skeletal. Dev. Dyn. 212, 141 –156 (1999).

    Article  Google Scholar 

  19. Hanson, R. D. et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc. Natl Acad. Sci. USA 96, 14372–14377 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Bird, A. P. & Wolffe, A. P. Methylation-induced repression–belts, braces, and chromatin. Cell 99, 451– 454 (1999).

    Article  CAS  Google Scholar 

  21. Herman J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. 93, 9821–9826 ( 1996).

    Article  ADS  Google Scholar 

  22. Runnebaum, I. B., Nagarajan, M., Bowman, M., Soto, D. & Sukumar, S. Mutations in p53 as potential molecular markers for human breast cancer. Proc. Natl Acad. Sci USA 88, 10657–10661 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Glebov, O. K., Mc Kenzie, K. E., White, C. A. & Sukumar, S. Frequent p53 gene mutations and novel alleles in familial breast cancer. Cancer Res. 54, 3703–3709 (1994).

    CAS  PubMed  Google Scholar 

  24. Bates, S. A. V. & Vousden, K. H. Mechanisms of p53-mediated apoptosis. Cell. Mol. Life Sci. 55, 28–37 (1999).

    Article  CAS  Google Scholar 

  25. Venkatachalam, S. et al. Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J. 17, 4657–4667 ( 1998).

    Article  CAS  Google Scholar 

  26. Gottleib, E. et al. Transgenic mouse model for studying the transcriptional activity of the p53 protein: age and tissue dependent changes in radiaton-induced activation during embryogenesis. EMBO J. 16, 1381– 1390 (1997).

    Article  Google Scholar 

  27. Seed B. & Sheen, J. Y. A simple phase extraction assay for chloramphenicol acetyltransferase activity. Gene 67, 271–277 (1988).

    Article  Google Scholar 

  28. Raman, V., Andrews, M. E., Harkey, M. A. & Raff, R. A. Protein–DNA interactions at putative regulatory regions of two coordinately expressed genes, msp130 and PM27, during skeletogenesis in sea urchin embryos. Int. J. Dev. Biol. 37, 499– 507 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the USPHS, the Susan G. Komen Foundation, the Department of Defense and the Breast Cancer Research Foundation to S.S. We thank A. Rein and B. Vogelstein for discussions and for critically reviewing the manuscript, V. Band for generously sharing data and reagents, and D. Korz for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saraswati Sukumar.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raman, V., Martensen, S., Reisman, D. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours . Nature 405, 974–978 (2000). https://doi.org/10.1038/35016125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016125

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing