Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p95-APP1 links membrane transport to Rac-mediated reorganization of actin

Abstract

Motility requires protrusive activity at the cellular edge, where Rho family members regulate actin dynamics. Here we show that p95-APP1 (ArfGAP-putative, Pix-interacting, paxillin-interacting protein 1), a member of the GIT1/PKL family, is part of a complex that interacts with Rac. Wild-type and truncated p95-APP1 induce actin-rich protrusions mediated by Rac and ADP-ribosylation factor 6 (Arf6). Distinct p95-APP1-derived polypeptides have different distributions, indicating that p95-APP1 cycles between the cell surface and endosomes. Our results show that p95-APP1 functionally interacts with Rac and localizes to endosomal compartments, thus identifying p95-APP1 as a molecular link between actin organization, adhesion, and membrane transport during cell motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific interaction of p95 with activated Rac.
Figure 2: Predicted amino-acid sequence of p95-APP1 and comparison to GIT1 and p95PKL.
Figure 3: Biochemical characterization of the p95-APP1–Rac interaction.
Figure 4: Distinct portions of p95-APP1 have distinct subcellular distributions and effects.
Figure 5: Differential subcellular distribution of p95-GAP and p95-N4.
Figure 6: p95-APP1 may be redistributed between the plasma membrane and the endosomal compartment.
Figure 7: PIX co-localizes with p95 and p95-C2 to a distinct intracellular compartment.
Figure 8: Cycling Arf6 is required for p95-APP1-induced cytoskeletal reorganization.
Figure 9: Rac mediates p95-C-induced protrusion and affects the subcellular distribution of p95-C.
Figure 10: Summary of the results and model for p95-APP1 function.

Similar content being viewed by others

References

  1. Mitchinson, T. J. & Cramer, L. P. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  Google Scholar 

  2. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509-514 (1998).

    Article  Google Scholar 

  3. Ridley, A. J. Rho: theme and variations. Curr. Biol. 6, 1256-1264 (1996).

    Article  Google Scholar 

  4. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  Google Scholar 

  5. Bretscher, M. S. & Aguado-Velasco, C. Membrane traffic during cell locomotion. Curr. Opin. Cell Biol. 10, 537–541 (1998).

    Article  CAS  Google Scholar 

  6. Hopkins, C. R., Gibson, A., Shipman, M., Strickland, D. K. & Trowbridge, I. S. In migrating fibroblasts, recycling receptors are concentrated in narrow tubules in the pericentriolar area, and then routed to the plasma membrane of the leading lamella. J. Cell Biol. 125, 1265–1274 (1994).

    Article  CAS  Google Scholar 

  7. Bretscher, M. S. & Aguado-Velasco, C. EGF induces recycling membrane to form ruffles. Curr. Biol. 8, 721–724 (1998).

    Article  CAS  Google Scholar 

  8. Lamaze, C., Chuang, T. H., Terlecky, L. J., Bokoch, G. M. & Schmid, S. L. Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382, 177–179 (1996).

    Article  CAS  Google Scholar 

  9. Murphy, C. et al. Endosome dynamics regulated by a Rho protein. Nature 384, 427–431 ( 1996).

    Article  CAS  Google Scholar 

  10. D’Souza-Schorey, C., Li, G., Colombo, M. I. & Stahl, P. D. A regulatory role for ARF6 in receptor-mediated endocytosis. Science 267, 1175– 1178 (1995).

    Article  Google Scholar 

  11. Peters, P. J. et al. Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol. 128, 1003–1017 ( 1995).

    Article  CAS  Google Scholar 

  12. Radhakrishna, H., Klausner, R. D. & Donaldson, J. G. Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol. 134, 935–947 (1996).

    Article  CAS  Google Scholar 

  13. D’Souza-Schorey, C., Boshans, R. L., McDonough, M., Stahl, P. D. & Van Aelst, L. A role for POR1, a Rac-interacting protein, in Arf6-mediated cytoskeletal rearrangements. EMBO J. 16, 5445–5454 (1997).

    Article  Google Scholar 

  14. Radhakrishna, H., Al-Awar, O., Khachikian, Z. & Donaldson, J. G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855–866 (1999).

    CAS  PubMed  Google Scholar 

  15. Kanoh, H., Williger, B. T. & Exton, J. H. Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272, 5421–5429 ( 1997).

    Article  CAS  Google Scholar 

  16. Van Aelst, L., Joneson, T. & Bar-Sagi, D. Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J. 15, 3778– 3786 (1996).

    Article  CAS  Google Scholar 

  17. Bagrodia, S. & Cerione, R. A. Pak to the future. Trends Cell Biol. 9, 350–399 (1999).

    Article  CAS  Google Scholar 

  18. Premont, R. T. et al. β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl Acad. Sci. USA 95, 14082– 14087 (1998).

    Article  CAS  Google Scholar 

  19. Bagrodia, S. et al. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins . J Biol. Chem. 274, 22393– 22400 (1999).

    Article  CAS  Google Scholar 

  20. Turner, C. E. et al. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: a role in cytoskeletal remodeling. J. Cell Biol. 145, 851–863 (1999).

    Article  CAS  Google Scholar 

  21. Turner, C. E., Glenney, J. R. & Burridge, K. Paxillin: a new vinculin-binding protein present in focal adhesions. J. Cell Biol. 111, 1059–1068 (1990).

  22. Nagase, T., Seki, N., Tanaka, A., Ishikawa, K. & Nomura, N. Prediction of the coding sequences of unidentified human genes. IV. The coding sequences of 40 new genes (KIAA 0121-KIAA 0160) deduced by analysis of cDNA clones from human cell line KG-1. DNA Res. 2, 167–174 ( 1995).

    Article  CAS  Google Scholar 

  23. Daniels, R. H. & Bokoch, G. M. p21-activated protein kinase: a crucial component of morphological signaling? Trends Biol. Sci. 24, 350–355 ( 1999).

    Article  CAS  Google Scholar 

  24. Bagrodia, S., Taylor, S. J., Jordan, K. A., Van Aelst, L. & Cerione, R. A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633– 23636 (1998).

    Article  CAS  Google Scholar 

  25. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183– 192 (1998).

    Article  CAS  Google Scholar 

  26. Oh, W. K. et al. Cloning of a SH3 domain-containing proline-rich protein, p85SPR, and its localization in focal adhesion. Biochem. Biophys. Res. Commun. 235, 794-798 (1997).

    Article  Google Scholar 

  27. Malosio, M. L., Gilardelli, D., Paris, S., Albertinazzi, C. & de Curtis, I. Differential expression of distinct members of the Rho family of GTP-binding proteins during neuronal development: identification of Rac1B, a new neural-specific member of the family. J.Neurosci. 17, 6717–6728 (1997).

    Article  CAS  Google Scholar 

  28. Cattelino, A., Albertinazzi, C., Bossi, M., Critchley, D.R. & de Curtis, I. A cell-free system to study regulation of focal adhesions and of the connected actin cytoskeleton. Mol. Biol. Cell 10, 373–391 ( 1999).

    Article  CAS  Google Scholar 

  29. Song, J., Khachikian, Z., Radhakrishna, H. & Donaldson, J. G. Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cell Sci. 111, 2257–2267 (1998).

    CAS  PubMed  Google Scholar 

  30. Albertinazzi, C., Cattelino, A. & de Curtis, I. Rac GTPases localize at sites of actin reorganization during dynamic remodeling of the cytoskeleton of normal embryonic fibroblasts . J Cell Sci. 112, 3821– 3831 (1999).

    CAS  PubMed  Google Scholar 

  31. Rottner, K., Hall, A. & Small, J. V. Interplay between Rac and Rho in the control of substrate contact dynamics. Curr. Biol. 9, 640– 648 (1999).

    Article  CAS  Google Scholar 

  32. Chavrier, P. & Goud, B. The role of ARF and Rab GTPases in membrane transport. Curr. Opin. Cell Biol. 11, 466–475 (1999).

    Article  CAS  Google Scholar 

  33. Franco, M. et al. EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J. 18, 1480–1491 ( 1999).

    Article  CAS  Google Scholar 

  34. Welsh, C. F., Moss, J. & Vaughan, M. Isolation of recombinant ADP-ribosylation factor 6, an approximately 20-kDa guanine nucleotide-binding protein, in an activated GTP-bound state. J. Biol. Chem. 269, 15583–15587 (1994).

  35. Vitale, N. et al. GIT proteins, a novel family of phosphatidylinositol 3,4,5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem. 275, 13901–13906 (2000).

    Article  CAS  Google Scholar 

  36. Albertinazzi, C., Gilardelli, D., Paris, S., Longhi, R. & de Curtis, I. Overexpression of a neural-specific Rho family GTPase, cRac1B, selectively induces enhanced neuritogenesis and neurite branching in primary neurons. J. Cell Biol. 142, 815–825 (1998).

    Article  CAS  Google Scholar 

  37. Laemmli, U. K. Cleavage of structural protiens during the assembly of the head of bacteriaphage T4. Nature 277, 680–685 (1970).

    Article  Google Scholar 

  38. Wilm, M. & Mann, M. Analytical properties of the nanoelectrospray ion source. Anal. Chem. 68, 1– 8 (1996).

    Article  CAS  Google Scholar 

  39. Wilm, M. et al. Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature 379, 466–469 (1996).

    Article  CAS  Google Scholar 

  40. de Curtis, I., Quaranta, V., Tamura, R. N. & Reichardt, L. F. Laminin receptors in the retina: sequence analysis of the chick integrin α6 subunit. J. Cell Biol. 113, 405– 416 (1991).

    Article  CAS  Google Scholar 

  41. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signalling domains. Proc. Natl Acad. Sci. USA 95, 5857– 5864 (1998).

    Article  CAS  Google Scholar 

  42. Tomaselli, K. J., Damsky, C. H. & Reichardt, L. F. Purification and characterization of mammalian integrins expressed by rat neuronal cell line (PC12): evidence that they may function as a/b etherodimeric receptors for collagen IV and laminin. J. Cell Biol. 107, 1241–1252 (1988).

    Article  CAS  Google Scholar 

  43. Bernard, V., Pohl, B. P. & Bokoch, G. M. Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases. J. Biol. Chem. 274, 13198–13204 ( 1999).

    Article  Google Scholar 

  44. Gaschet, J. & Hsu, V. W. Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle. J. Biol. Chem. 274, 20040–20045 (1999).

    Article  CAS  Google Scholar 

  45. Bokoch, G. M. et al. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J. Biol. Chem. 273, 8137–8144 (1998).

    Article  CAS  Google Scholar 

  46. Lievremont, J. P., Rizzuto, R., Hendershot, L. & Meldolesi, J. BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of Ca2+. J. Biol.Chem. 272, 30873– 30879 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Ranscht for the E13 chick-brain cDNA library, to E. Manser and L. Lim for the pXJ40–HA–βPIX plasmid and the anti-PIX antibody, to V. Hsu for the anti-Arf6 antibody, to G. Bokoch for the pCMV6m/Pak1 plasmid and the anti-Pak1 antibody, and to J. Meldolesi for critical reading of the manuscript. The financial support of Telethon-Italy (grant n.1171 to I.d.C.) is gratefully acknowledged. A.D.C. was supported by a fellowship from the Armenise-Harvard Foundation. C.A. was supported by a fellowship from the Italian Federation for Cancer Research (FIRC).

Correspondence and requests for materials should be addressed to I.d.C. The nucleotide sequence of p95-APP1 has been deposited at Genbank under accession number AF216970.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Cesare, A., Paris, S., Albertinazzi, C. et al. p95-APP1 links membrane transport to Rac-mediated reorganization of actin . Nat Cell Biol 2, 521–530 (2000). https://doi.org/10.1038/35019561

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35019561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing