Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chromatin remodelling complex involved in transcription and DNA processing

Abstract

The packaging of the eukaryotic genome in chromatin presents barriers that restrict the access of enzymes that process DNA1,2. To overcome these barriers, cells possess a number of multi-protein, ATP-dependent chromatin remodelling complexes, each containing an ATPase subunit from the SNF2/SWI2 superfamily3,4. Chromatin remodelling complexes function by increasing nucleosome mobility and are clearly implicated in transcription5,6,7. Here we have analysed SNF2/SWI2- and ISWI-related proteins to identify remodelling complexes that potentially assist other DNA transactions. We purified a complex from Saccharomyces cerevisiae that contains the Ino80 ATPase8. The INO80 complex contains about 12 polypeptides including two proteins related to the bacterial RuvB DNA helicase9,10,11, which catalyses branch migration of Holliday junctions. The purified complex remodels chromatin, facilitates transcription in vitro and displays 3′ to 5′ DNA helicase activity. Mutants of ino80 show hypersensitivity to agents that cause DNA damage, in addition to defects in transcription8. These results indicate that chromatin remodelling driven by the Ino80 ATPase may be connected to transcription as well as DNA damage repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and characterization of the INO80 complex.
Figure 2: Rvb1 and Rvb2 are subunits of the INO80 complex.
Figure 3: INO80 complex has 3′ to 5′ specific helicase activity.
Figure 4: INO80 complex remodels and promotes transcription from a chromatin template.
Figure 5: Analysis of ino80 mutant phenotypes.

Similar content being viewed by others

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 ( 1999).

    Article  CAS  Google Scholar 

  2. Luger, K. & Richmond, T. J. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8, 33– 40 (1998).

    Article  CAS  Google Scholar 

  3. Eisen, J. A., Sweder, K. S. & Hanawalt, P. C. Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res. 23, 2715–2723 (1995).

    Article  CAS  Google Scholar 

  4. Peterson, C. L. Multiple SWItches to turn on chromatin? Curr. Opin. Genet. Dev. 6, 171–175 ( 1996).

    Article  CAS  Google Scholar 

  5. Armstrong, J. A. & Emerson, B. M. Transcription of chromatin: these are complex times. Curr. Opin. Genet. Dev. 8, 165–172 ( 1998).

    Article  CAS  Google Scholar 

  6. Kadonaga, J. T. Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 92, 307 –313 (1998).

    Article  CAS  Google Scholar 

  7. Workman, J. L. & Kingston, R. E. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67, 545–579 ( 1998).

    Article  CAS  Google Scholar 

  8. Ebbert, R., Birkmann, A. & Schüller, H. J. The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32, 741– 751 (1999).

    Article  CAS  Google Scholar 

  9. Qiu, X. B. et al. An eukaryotic RuvB-like protein (RUVBL1) essential for growth. J. Biol. Chem. 273, 27786– 27793 (1998).

    Article  CAS  Google Scholar 

  10. Kanemaki, M. et al. Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem. Biophys. Res. Commun. 235, 64–68 (1997).

    Article  CAS  Google Scholar 

  11. Kanemaki, M. et al. TIP49b, a new RuvB-like DNA helicase, is included in a complex together with another RuvB-like DNA helicase, TIP49a. J. Biol. Chem. 274, 22437–22444 ( 1999).

    Article  CAS  Google Scholar 

  12. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodelling factor. Cell 83, 1021–1026 (1995).

    Article  CAS  Google Scholar 

  13. Tsukiyama, T., Palmer, J., Landel, C. C., Shiloach, J. & Wu, C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodelling factors in Saccharomyces cerevisiae. Genes Dev. 13, 686– 697 (1999).

    Article  CAS  Google Scholar 

  14. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 ( 1998).

    Article  CAS  Google Scholar 

  15. Cairns, B. R., Erdjument-Bromage, H., Tempst, P., Winston, F. & Kornberg, R. D. Two actin-related proteins are shared functional components of the chromatin-remodelling complexes RSC and SWI/SNF. Mol. Cell 2, 639– 651 (1998).

    Article  CAS  Google Scholar 

  16. Galarneau, L. et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927–937 (2000).

    Article  CAS  Google Scholar 

  17. West, S. C. Processing of recombination intermediates by the RuvABC proteins. Annu. Rev. Genet. 31, 213–244 (1997).

    Article  CAS  Google Scholar 

  18. Wood, M. A., McMahon, S. B. & Cole, M. D. An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol. Cell 5, 321–330 (2000).

    Article  CAS  Google Scholar 

  19. Ikura, T. et al. Link of TIP60 histone acetylase to DNA repair and apoptosis. Nature (submitted).

  20. Côté, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53– 60 (1994).

    Article  ADS  Google Scholar 

  21. Cairns, B. R. et al. RSC, an essential, abundant chromatin-remodelling complex. Cell 87, 1249–1260 (1996).

    Article  CAS  Google Scholar 

  22. Mizuguchi, G., Tsukiyama, T., Wisniewski, J. & Wu, C. Role of nucleosome remodelling factor NURF in transcriptional activation of chromatin. Mol. Cell 1, 141–150 (1997).

    Article  CAS  Google Scholar 

  23. Weinert, T. A. & Hartwell, L. H. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 10, 6554–6564 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang, M. & Elledge, S. J. Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 6105 –6113 (1997).

    Article  CAS  Google Scholar 

  25. Haber, J. E. DNA recombination: the replication connection. Trends Biochem. Sci. 24, 271–275 ( 1999).

    Article  CAS  Google Scholar 

  26. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).

    Article  CAS  Google Scholar 

  27. Gdula, D. A., Sandaltzopoulos, R., Tsukiyama, T., Ossipow, V. & Wu, C. Inorganic pyrophosphatase is a component of the Drosophila nucleosome remodelling factor complex. Genes Dev. 12, 3206–3216 (1998).

    Article  CAS  Google Scholar 

  28. Hansen, S. K. & Tjian, R. TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82, 565–575 (1995).

    Article  CAS  Google Scholar 

  29. Tsukiyama, T. & Wu, C. Purification and properties of an ATP-dependent nucleosome remodelling factor. Cell 83, 1011–1020 (1995).

    Article  CAS  Google Scholar 

  30. Park, J. S., Choi, E., Lee, S. H., Lee, C. & Seo, Y. S. A DNA helicase from Schizosaccharomyces pombe stimulated by single-stranded DNA-binding protein at low ATP concentration. J. Biol. Chem. 272, 18910–18919 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tsukiyama and the CSHL yeast genetics course 1998 for expert training, and members of our lab for help and discussion. We also thank Y. Nakatani, J. Pradel and J. Cote for sharing results; W. S. Lane for peptide sequencing; F. Winston and D. E. Gottschling for yeast strains; and M. Lichten and G. Storz for helpful comments on the manuscript. X.S. was supported by the American Cancer Society, and A.H. was supported by the Human Frontiers of Science Program. This work was supported by the Intramural Research Program of the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, X., Mizuguchi, G., Hamiche, A. et al. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000). https://doi.org/10.1038/35020123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020123

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing