Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toll-like receptors in the induction of the innate immune response

Abstract

The innate immune response is the first line of defence against infectious disease. The principal challenge for the host is to detect the pathogen and mount a rapid defensive response. A group of proteins that comprise the Toll or Toll-like family of receptors perform this role in vertebrate and invertebrate organisms. This reflects a remarkable conservation of function and it is therefore not surprising that studies of the mechanism by which they act has revealed new and important insights into host defence.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition of LPS on the surface of phagocytes.
Figure 2: Signalling pathways activated by TLRs in vertebrates and in Drosophila .

Similar content being viewed by others

References

  1. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Aderem, A. & Underhill, D. M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Janeway, C. A. Jr & Medzhitov, R. Introduction: the role of innate immunity in the adaptive immune response. Semin. Immunol. 10, 349–350 ( 1998).

    Google Scholar 

  4. Ulevitch, R. J. & Tobias, P. S. Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr. Opin. Immunol. 11, 19–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Raetz, C. R. Biochemistry of endotoxins. Annu. Rev. Biochem. 59, 129–170 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Darveau, R. P. Lipid A diversity and the innate host response to bacterial infection. Curr. Opin. Microbiol. 1, 36–42 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Lien, E. et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 105, 497–504 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Poltorak, A., Ricciardi-Castagnoli, P., Citterio, S. & Beutler, B. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl Acad. Sci. USA 97, 2163–2167 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Henderson, B., Poole, S. & Wilson, M. Bacterial modulins: a novel class of virulence factors which cause host tissue pathology by inducing cytokine synthesis. Microbiol. Rev. 60, 316–341 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brennan, P. J. & Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem. 64, 29 –63 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Kalambaheti, T., Bulach, D. M., Rajakumar, K. & Adler, B. Genetic organization of the lipopolysaccharide O-antigen biosynthetic locus of Leptospira borgpetersenii serovar Hardjobovis. Microb. Pathogen. 27, 105–117 ( 1999).

    Article  CAS  Google Scholar 

  12. Mitchison, M. et al. Identification and characterization of the dTDP-rhamnose biosynthesis and transfer genes of the lipopolysaccharide-related rfb locus in Leptospira interrogans serovar Copenhageni. J. Bacteriol. 179, 1262–1267 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaffin, W. L., Lopez-Ribot, J.L., Casanova, M., Gozalbo, D. & Martinez, J. P. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62, 130– 180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tachado, S. D. et al. Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc. Natl Acad. Sci. USA 94, 4022–4027 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Descoteaux, A., Matlashewski, G. & Turco, S. J. Inhibition of macrophage protein kinase C-mediated protein phosphorylation by Leishmania donovani lipophosphoglycan. J. Immunol. 149, 3008–3015 (1992).

    CAS  PubMed  Google Scholar 

  16. Ulevitch, R. J. & Tobias, P. S. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13, 437–457 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  17. Schumann, R. R. et al. Structure and function of lipopolysaccharide binding protein . Science 249, 1429–1431 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. & Mathison, J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431–1433 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  20. Williams, M. J., Rodriguez, A., Kimbrell, D. A. & Eldon, E. D. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. EMBO J. 16, 6120–6130 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085 –2088 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Qureshi, S. T. et al. Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189, 615– 625 (1999). [Erratum, J. Exp. Med. 189, following 1518 (1999)].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product . J. Immunol. 162, 3749– 3752 (1999).

    CAS  PubMed  Google Scholar 

  24. Imler, J. L. & Hoffmann, J. A. Signaling mechanisms in the antimicrobial host defense of Drosophila. Curr. Opin. Microbiol. 3, 16–22 (2000 ).

    Article  CAS  PubMed  Google Scholar 

  25. Anderson, K. V. Toll signaling pathways in the innate immune response. Curr. Opin. Immunol. 12, 13–19 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  26. Medzhitov, R., Preston-Hurlburt, P. & Janeway, C. A. Jr A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394–397 ( 1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Rock, F. L., Hardiman, G., Timans, J. C., Kastelein, R. A. & Bazan, J. F. A family of human receptors structurally related to Drosophila Toll. Proc. Natl Acad. Sci. USA 95, 588–593 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, R. B. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284– 288 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Kirschning, C. J., Wesche, H., Merrill, A. T. & Rothe, M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide . J. Exp. Med. 188, 2091– 2097 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Underhill, D. M. et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Heine, H. et al. Cutting edge: cells that carry A null allele for toll-like receptor 2 are capable of responding to endotoxin. J. Immunol. 162, 6971–6975 (1999).

    CAS  PubMed  Google Scholar 

  32. Shimazu, R. et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Flo, T. H. et al. Human toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide . J. Immunol. 164, 2064– 2069 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Lien, E. et al. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 274, 33419–33425 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Takeuchi, O. et al. Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor. J. Immunol. 164, 554 –557 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Hirschfeld, M. et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol. 163, 2382–2386 ( 1999).

    CAS  PubMed  Google Scholar 

  38. Ohashi, K., Burkart, V., Flohe, S. & Kolb, H. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164, 558– 561 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Means, T. K. et al. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for Toll-like receptors. J. Immunol. 163, 6748–6755 ( 1999).

    CAS  PubMed  Google Scholar 

  40. Means, T. K. et al. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163, 3920–3927 (1999).

    CAS  PubMed  Google Scholar 

  41. Brightbill, H. D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Underhill, D. M., Ozinsky, A., Smith, K. D. & Aderem, A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl Acad. Sci. USA 96, 14459–14463 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chaudhary, P. M. et al. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91, 4020–4027 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  44. Takeuchi, O. et al. TLR6: a novel member of an expanding toll-like receptor family . Gene 231, 59–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253– 258 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Yang, R. B., Mark, M. R., Gurney, A. L. & Godowski, P. J. Signaling events induced by lipopolysaccharide-activated toll-like receptor 2. J. Immunol. 163, 639– 643 (1999).

    CAS  PubMed  Google Scholar 

  48. Muzio, M., Natoli, G., Saccani, S., Levrero, M. & Mantovani, A. The human toll signaling pathway: divergence of nuclear factor κB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187, 2097–2101 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Medzhitov, R. & Janeway, C. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 ( 1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Kopp, E. et al. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev. 13, 2059–2071 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Irie, T., Muta, T. & Takeshige, K. TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-κB in lipopolysaccharide-stimulated macrophages. FEBS Lett. 467, 160–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin . Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Lomaga, M. A. et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13, 1015–1024 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thomas, J. A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor- associated kinase. J. Immunol. 163, 978– 984 (1999).

    CAS  PubMed  Google Scholar 

  58. Wesche, H. et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J. Biol. Chem. 274, 19403–19410 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aderem, A., Ulevitch, R. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000). https://doi.org/10.1038/35021228

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35021228

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing