Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An intact HDM2 RING-finger domain is required for nuclear exclusion of p53

Abstract

The p53 tumour-suppressor protein is negatively regulated by HDM2. Recent reports indicate that the leucine-rich nuclear-export sequence (NES) of HDM2 enables it to shuttle to the cytoplasm, and that this activity is required for degradation of p53. However, it is unclear whether HDM2 is involved in nuclear export of p53, partly because p53 has itself been shown to contain a functional NES within its tetramerization domain. Here we show that co-expression of HDM2 with green fluorescent protein (GFP)-tagged p53 causes redistribution of p53 from the nucleus to the cytoplasm of the cell. This activity is dependent on binding of p53 to HDM2, and requires an intact p53 NES, but is independent of the HDM2 NES. A mutant of the HDM2 RING-finger domain that is unable to ubiquitinate p53 does not cause relocalization of p53, indicating that ubiquitin ligation or other activities of this region of HDM2 may be necessary for its regulation of p53 localization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-transfection of p53–GFP and HDM2 in NIH/3T3 fibroblasts and U2OS osteosarcoma cells.
Figure 2: Co-transfection of GFP–p53(L22Q,W23S) and GFP–p53(NES–) with HDM2.
Figure 3: Co-expression of HDM2(NES–) with p53–GFP.
Figure 4: Co-expression of HDM2(C464A) with wild-type p53–GFP.
Figure 5: HDM2 cannot relocalize p53–GFP in ts20 cells with an inactivated E1 ubiquitin-charging enzyme.

Similar content being viewed by others

References

  1. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  2. Lin, J., Chen, J., Elenbaas, B. & Levine, A. J. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5E1B 55-kD protein. Genes Dev. 8, 1235–1246 (1994).

    Article  CAS  Google Scholar 

  3. Honda, R., Tanaka, H. & Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase for tumor suppressor p53. FEBS Lett. 420, 25– 27 (1997).

    Article  CAS  Google Scholar 

  4. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  Google Scholar 

  5. Tao, W. & Levine, A. J. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl Acad. Sci. USA 96, 3077– 3080 (1999).

    Article  CAS  Google Scholar 

  6. Fornerod, M., Ohno, M., Yoshida, M. & Mattaj, I. W. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    Article  CAS  Google Scholar 

  7. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308– 311 (1997).

    Article  CAS  Google Scholar 

  8. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278, 141– 144 (1997).

    Article  CAS  Google Scholar 

  9. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 18, 7288– 7293 (1998).

    Article  CAS  Google Scholar 

  10. Middeler, G. et al. The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 14, 1407–1417 ( 1997).

    Article  CAS  Google Scholar 

  11. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking . EMBO J. 18, 1660–1672 (1999).

    Article  CAS  Google Scholar 

  12. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296 –299 (1997).

    Article  CAS  Google Scholar 

  13. Kubbutat, M. H., Ludwig, R. L., Ashcroft, M. & Vousden, K. H. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell Biol. 18, 5690–5698 (1998).

    Article  CAS  Google Scholar 

  14. Marston, N. J., Jenkins, J. R. & Vousden, K. H. Oligomerisation of full length p53 contributes to the interaction with mdm2 but not HPV E6. Oncogene 10, 1709–1715 (1995).

    CAS  Google Scholar 

  15. Elenbaas, B., Dobbelstein, M., Roth, J., Shenk, T. & Levine, A. J. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med. 2, 439–451 (1996).

    Article  CAS  Google Scholar 

  16. Tanimura, S. et al. MDM2 Interacts with MDMX through their RING finger domains . FEBS Lett. 447, 5–9 (1999).

    Article  CAS  Google Scholar 

  17. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000).

    Article  CAS  Google Scholar 

  18. Waldman, T., Kinzler, K. W. & Vogelstein, B. p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res. 55, 5187– 5190 (1995).

    CAS  Google Scholar 

  19. Chowdary, D. R., Dermody, J. J., Jha, K. K. & Ozer, H. L. Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway . Mol. Cell Biol. 14, 1997– 2003 (1994).

    Article  CAS  Google Scholar 

  20. Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C. & Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell Biol. 14, 7414–7420 (1994).

    Article  CAS  Google Scholar 

  21. Moy, T. & Silver, P. A. Nuclear export of the small ribosomal subunit requires the Ran-GTPase cycle and certain nucleoporins. Genes Dev. 13, 2118–2133 (1999).

    Article  CAS  Google Scholar 

  22. Brooks, P. et al. Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem. J. 346, 155–161 (2000).

    Article  CAS  Google Scholar 

  23. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657– 661 (1999).

    Article  CAS  Google Scholar 

  24. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCFgrr and Rbx1. Science 284, 662–665 (1999).

    Article  CAS  Google Scholar 

  25. Zaika, A., Marchenko, N. & Moll, U. M. Cytoplasmically ‘sequestered’ wild type p53 protein is resistant to Mdm2-mediated degradation. J. Biol. Chem. 274, 27474–27480 ( 1999).

    Article  CAS  Google Scholar 

  26. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193–202 ( 1998).

    Article  CAS  Google Scholar 

  27. Hicke, L. Ubiquitin-dependent internalization and down-regulation of plasma membrane proteins. FASEB J. 11, 1215– 1226 (1997).

    Article  CAS  Google Scholar 

  28. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462– 6471 (1999).

    Article  CAS  Google Scholar 

  29. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455– 6461 (1999).

    Article  CAS  Google Scholar 

  30. Lohrum, M. A. E., Ashcroft, M., Kubbutat, M. H. G. & Vousden, K. H. Identification of a cryptic nucleolar-localization signal in MDM2. Nature Cell Biol. 2, 179–181 (2000).

    Article  CAS  Google Scholar 

  31. Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20– 26 (1999).

    Article  CAS  Google Scholar 

  32. Zhang, Y. & Xiong, Y. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579– 591 (1999).

    Article  CAS  Google Scholar 

  33. Honda, R. & Yasuda, H. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of Mdm2 for tumor suppressor p53. EMBO J. 18, 22–27 ( 1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Vogelstein, J. Lin, J. Xiao and A. Schwartz for plasmids, and H. Ozer for providing ts20 cells. We also thank H. Schwartz for reading the manuscript and S. Joshi for helpful comments. T.J. is an Associate Investigator of the Howard Hughes Medical Institute. K.Y.T. is supported by the Medical Scientist Training Program. S.D.B. is a Predoctoral Fellow of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler Jacks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, S., Tsai, K. & Jacks, T. An intact HDM2 RING-finger domain is required for nuclear exclusion of p53. Nat Cell Biol 2, 563–568 (2000). https://doi.org/10.1038/35023500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing