Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The MDM2 RING-finger domain is required to promote p53 nuclear export

Abstract

MDM2 can bind to p53 and promote its ubiquitination and subsequent degradation by the proteasome. Current models propose that nuclear export of p53 is required for MDM2-mediated degradation, although the function of MDM2 in p53 nuclear export has not been clarified. Here we show that MDM2 can promote the nuclear export of p53 in transiently transfected cells. This activity requires the nuclear-export signal (NES) of p53, but not the NES of MDM2. A mutation within the MDM2 RING-finger domain that inhibits p53 ubiquitination also inhibits the ability of MDM2 to promote p53 nuclear export. Finally, inhibition of nuclear export stabilizes wild-type p53 and leads to accumulation of ubiquitinated p53 in the nucleus. Our results indicate that MDM2-mediated ubiquitination, or other activities associated with the RING-finger domain, can stimulate the export of p53 to the cytoplasm through the activity of the p53 NES.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MDM2 affects the localization of p53.
Figure 2: Quantification of p53 staining in transfected cells.
Figure 3: The RING-finger domain, but not the NES, of MDM2 is required for p53 nuclear export.
Figure 4: Ubiquitination, degradation and MDM2 binding of p53.
Figure 5: Ubiquitinated p53 accumulates in the nucleus when nuclear export is inhibited.
Figure 6: MDM2-mediated degradation in Saos-2 and HCT-116 cells.

Similar content being viewed by others

References

  1. Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).

    Article  CAS  Google Scholar 

  2. Kubbutat, M. H., Jones, S. N. & Vousden, K. H. Regulation of p53 stability by MDM2. Nature 387, 299–303 (1997).

    Article  CAS  Google Scholar 

  3. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  Google Scholar 

  4. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 18, 7288–7293 (1998).

    Article  CAS  Google Scholar 

  5. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18, 1660–1672 (1999).

    Article  CAS  Google Scholar 

  6. Roth, J., Dobbelstein, M., Freedman, D. A., Shenk, T. & Levine, A. J. Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17, 554–564 (1998).

    Article  CAS  Google Scholar 

  7. Chen, J., Marechal, V. & Levine, A. J. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell Biol. 13, 4107–4114 (1993).

    Article  CAS  Google Scholar 

  8. Unger, T., Mietz, J. A., Scheffner, M., Yee, C. L. & Howley, P. M. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol. Cell Biol. 13, 5186–5194 (1993).

    Article  CAS  Google Scholar 

  9. Ellenbaas, B., Dobblestein, M., Roth, J., Shenk, T. & Levine, A. J. The MDM2 oncoprotein binds specifically to RNA through its RING finger domain. Mol. Med. 2, 439–451 (1996).

    Article  Google Scholar 

  10. Honda, R., Tanaka, H. & Yasuda H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420, 25–27 (1997).

    Article  CAS  Google Scholar 

  11. Taminura, S. et al. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 447, 5–9 (1999).

    Article  Google Scholar 

  12. Kubbutat, M. H., Ludwig, R. L., Levine, A. J. & Vousden, K. H. Analysis of the degradation function of Mdm2. Cell Growth Diff. 10, 87–92 (1999).

    CAS  Google Scholar 

  13. Maki, C. G., Huibregtse, J. M. & Howley, P. M. In vivo ubiquitination and proteasome-mediated degradation of p53. Cancer Res. 56, 2649–2654 (1996).

    CAS  Google Scholar 

  14. Olivier, M., Bautista, S., Valles, H. & Theillet, C. Relaxed cell-cycle arrests and propagation of unrepaired chromosomal damage in cancer cell lines with wild-type p53. Mol. Carcinogenesis 23, 1–12 (1998).

    Article  CAS  Google Scholar 

  15. Kamura, T. et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284, 657–661 (1999).

    Article  CAS  Google Scholar 

  16. Skowyra, D. et al. Reconstitution of G1 cyclin ubiquitination with complexes containing SCF grr and Rbx1. Science 284, 662–665 (1999).

    Article  CAS  Google Scholar 

  17. Gostissa, M. et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 18, 6462–6471 (1999).

    Article  CAS  Google Scholar 

  18. Rodriguez, M. S. et al. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18, 6455–6461 (1999).

    Article  CAS  Google Scholar 

  19. Marechal, V., Elenbaas, B., Piette, J., Nicolas, J. C. & Levine, A. J. The ribosomal L5 protein is associated with mdm-2 and mdm-2–p53 complexes. Mol. Cell Biol. 14, 7414–7420 1994.

    Article  CAS  Google Scholar 

  20. Kamijo, T. et al. Functional and physical interactions of the ARF tumor suppressor with p53 and MDM2. Proc. Natl Acad. Sci. USA 95, 8292–8297 (1998).

    Article  CAS  Google Scholar 

  21. Honda, R. & Yasuda, H. Association of p19 ARF with MDM2 inhibits ubiquitin ligase activity of MDM2 for tumor suppressor p53. EMBO J. 18, 22–27 (1999).

    Article  CAS  Google Scholar 

  22. Tao, W. & Levine, A. J. p19 (ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of MDM2. Proc. Natl Acad. Sci. USA 96, 6937–6941 (1999).

    Article  CAS  Google Scholar 

  23. Zhang, Y. & Xiong, Y. Mutations in human ARF exon two disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3, 579–591 (1999).

    Article  CAS  Google Scholar 

  24. Weber, J. D., Taylor, J. D., Roussel, M. F., Sherr, C. J. & Bar-Sagi, D. Nucleolar Arf sequesters Mdm2 and activates p53. Nature Cell Biol. 1, 20–26 (1999).

    Article  CAS  Google Scholar 

  25. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  26. Sakaguchi, K. et al. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36, 10117–10124 (1997).

    Article  CAS  Google Scholar 

  27. Unger, T., Mietz, J. A., Scheffner, M., Yee, C. L. & Howley, P. M. Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression. Mol. Cell Biol. 13, 5186–5194 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Howley and P. Hinds for advice and critical reading of the manuscript. This work was supported by Public Health Service grant 1R01CA80918 and by a breast cancer research grant from the Massachusetts Department of Public Health (both to C.G.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl G. Maki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geyer, R., Yu, Z. & Maki, C. The MDM2 RING-finger domain is required to promote p53 nuclear export. Nat Cell Biol 2, 569–573 (2000). https://doi.org/10.1038/35023507

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35023507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing