Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Loosening of plant cell walls by expansins

Abstract

Plant cell walls are the starting materials for many commercial products, from lumber, paper and textiles to thickeners, films and explosives. The cell wall is secreted by each cell in the plant body, forming a thin fibreglass-like network with remarkable strength and flexibility. During growth, plant cells secrete a protein called expansin, which unlocks the network of wall polysaccharides, permitting turgor-driven cell enlargement. Germinating grass pollen also secretes an unusual expansin that loosens maternal cell walls to aid penetration of the stigma by the pollen tube. Expansin's action has puzzling implications for plant cell-wall structure. The recent explosion of gene sequences and expression data has given new hints of additional biological functions for expansins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of extensometer assays.
Figure 2: Phylogenetic tree of rice α- and β-expansins.
Figure 3: A model of expansin's wall-loosening action.
Figure 4: Predicted structure of expansin protein.

Similar content being viewed by others

References

  1. Varner, J. E. & Lin, L.-S. Plant cell wall architecture. Cell 56, 231–239 ( 1989).

    Article  CAS  Google Scholar 

  2. Talbott, L. D. & Ray, P. M. Molecular size and separability features of pea cell wall polysaccharides. Implications for models of primary wall structure. Plant Physiol. 92, 357– 368 (1992).

    Article  Google Scholar 

  3. Roberts, K. The plant extracellular matrix, in a new expansive mood. Curr. Opin. Cell Biol. 6, 688–694 (1994).

    Article  CAS  Google Scholar 

  4. McCann, M. C., Wells, B. & Roberts, K. Complexity in the spatial localization and length distribution of plant cell-wall matrix polysaccharides. J. Microsc. 166, 123–136 (1992).

    Article  CAS  Google Scholar 

  5. McCann, M. C., Wells, B. & Roberts, K. Direct visualization of cross-links in the primary plant cell wall. J. Cell Sci. 96, 323– 334 (1990).

    Google Scholar 

  6. Carpita, N. C. & Gibeaut, D. M. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993).

    Article  CAS  Google Scholar 

  7. Cosgrove, D. J. Enzymes and other agents that enhance cell wall extensibility. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 391– 417 (1999).

    Article  CAS  Google Scholar 

  8. Cosgrove, D. J. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake and hydraulic conductance. Int. J. Plant. Sci. 154, 10–21 ( 1993).

    Article  CAS  Google Scholar 

  9. Rayle, D. L. & Cleland, R. E. The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99 , 1271–1274 (1992).

    Article  CAS  Google Scholar 

  10. Cosgrove, D. J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. Planta 177, 121– 130 (1989).

    Article  CAS  Google Scholar 

  11. McQueen-Mason, S., Durachko, D. M. & Cosgrove, D. J. Two endogenous proteins that induce cell wall expansion in plants. Plant Cell 4, 1425– 1433 (1992).

    Article  CAS  Google Scholar 

  12. Cosgrove, D. J. & Li, Z.-C. Role of expansin in developmental and light control of growth and wall extension in oat coleoptiles. Plant Physiol. 103, 1321– 1328 (1993).

    Article  CAS  Google Scholar 

  13. Keller, E. & Cosgrove, D. J. Expansins in growing tomato leaves. Plant J. 8, 795– 802 (1995).

    Article  CAS  Google Scholar 

  14. Cho, H. T. & Kende, H. Expansins and internodal growth of deepwater rice. Plant Physiol. 113, 1145 –1151 (1997).

    Article  CAS  Google Scholar 

  15. Wu, Y., Sharp, R. E., Durachko, D. M. & Cosgrove, D. J. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. Plant Physiol. 111, 765– 772 (1996).

    Article  CAS  Google Scholar 

  16. Cho, H. T. & Kende, H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9, 1661–1671 (1997).

    Article  CAS  Google Scholar 

  17. Vriezen, W. H., De Graaf, B., Mariani, C. & Vosenek, L. A. C. J. Submergence induces expansin gene expressin in flooding tolerant Rumex palustris and not in flooding intolerant R. acetosa. Planta 210, 956–963 ( 2000).

    Article  CAS  Google Scholar 

  18. Hutchison, K. W., Singer, P. B., Diaz-Sala, C. & Greenwood, M. S. Expansins are conserved in conifers and expressed in response to exogenous auxin. Plant Physiol. 120, 827– 832 (1999).

    Article  CAS  Google Scholar 

  19. Fleming, A. J., Caderas, D., Wehrli, E., McQueen-Mason, S. & Kuhlemeier, C. Analysis of expansin-induced morphogenesis on the apical meristem of tomato. Planta 208, 166– 174 (1999).

    Article  CAS  Google Scholar 

  20. Moore, R. C., Flecker, D. & Cosgrove, D. J. Expansin action on cells with tip growth and diffuse growth. J. Cell. Biochem. (Suppl.) 21A, 457; abstract J5–312 (1995).

    Google Scholar 

  21. Link, B. M. & Cosgrove, D. J. Acid-growth response and α-expansins in suspension cultures of bright yellow 2 tobacco. Plant Physiol. 118, 907–916 ( 1998).

    Article  CAS  Google Scholar 

  22. Fleming, A. J., McQueen-Mason, S., Mandel, T. & Kuhlemeier, C. Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415–1418 ( 1997).

    Article  CAS  Google Scholar 

  23. Green, P. B. Expansin and morphology: a role for biophysics. Trends Plant Sci. 2, 365–366 ( 1997).

    Article  Google Scholar 

  24. McQueen-Mason, S. & Cosgrove, D. J. Expansin mode of action on cell walls: Analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol. 107, 87– 100 (1995).

    Article  CAS  Google Scholar 

  25. Cosgrove, D. J. & Durachko, D. M. Autolysis and extension of isolated walls from growing cucumber hypocotyls. J. Exp. Bot. 45, 1711–1719 (1994).

    Article  CAS  Google Scholar 

  26. Reinhardt, D., Wittwer, F., Mandel, T. & Kuhlemeier, C. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10, 1427–1437 (1998).

    Article  CAS  Google Scholar 

  27. Kende, H., Van der Knaap, E. & Cho, H. T. Deepwater rice: A model plant to study stem elongation. Plant Physiol. 118, 1105– 1110 (1998).

    Article  CAS  Google Scholar 

  28. Catala, C., Rose, J. K. & Bennett, A. B. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol. 122, 527–534 ( 2000).

    Article  CAS  Google Scholar 

  29. Brummell, D. A., Harpster, M. H. & Dunsmuir, P. Differential expression of expansin gene family members during growth and ripening of tomato fruit. Plant Mol. Biol. 39, 161–169 (1999).

    Article  CAS  Google Scholar 

  30. Orford, S. J. & Timmis, J. N. Specific expression of an expansin gene during elongation of cotton fibres. Biochim. Biophys. Acta Gene Struct. Expression 1398, 342– 346 (1998).

    Article  CAS  Google Scholar 

  31. Shimizu, Y. et al. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol. 38, 375–378 (1997).

    Article  CAS  Google Scholar 

  32. Cho, H. T. & Cosgrove, D. J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA (in the press).

  33. Shcherban, T. Y. et al. Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc. Natl Acad. Sci. USA 92, 9245–9249 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Smith, P. M., Knox, R. B. & Singh, M. B. in Pollen Biotechnology: Gene Expression and Allergen Characterization (eds Mohapatra, S. S. & Knox, R. B.) 125– 143 (Chapman & Hall, New York, 1996).

    Book  Google Scholar 

  35. Knox, B. & Suphioglu, C. Environmental and molecular biology of pollen allergens. Trends Plant Sci. 1, 156–164 (1996).

    Article  Google Scholar 

  36. Cosgrove, D. J., Bedinger, P. & Durachko, D. M. Group I allergens of grass pollen as cell wall-loosening agents. Proc. Natl Acad. Sci. USA 94, 6559 –6564 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Heslop-Harrison, Y., Reger, B. J. & Heslop-Harrison, J. The pollen-stigma interaction in the grasses. 5. Tissue organization and cytochemistry of the stigma (“silk”) of Zea mays L. Acta Bot. Neerl. 33, 81– 99 (1984).

    Article  Google Scholar 

  38. Carpita, N. C. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 445– 476 (1996).

    Article  CAS  Google Scholar 

  39. Crowell, D. N. Cytokinin regulation of a soybean pollen allergen gene. Plant Mol. Biol. 25, 829–835 ( 1994).

    Article  CAS  Google Scholar 

  40. Downes, B. P. & Crowell, D. N. Cytokinin regulates the expression of a soybean β-expansin gene by a post-transcriptional mechanism. Plant Mol. Biol. 37, 437–444 (1998).

    Article  CAS  Google Scholar 

  41. Rose, J. K. C. & Bennett, A. B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 4, 176–183 (1999).

    Article  CAS  Google Scholar 

  42. Fischer, R. L. & Bennett, A. B. Role of cell wall hydrolases in fruit ripening. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 675–703 ( 1991).

    Article  CAS  Google Scholar 

  43. Giovannoni, J. J., DellaPenna, D., Bennett, A. B. & Fischer, R. L. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1, 53–63 (1989).

    Article  CAS  Google Scholar 

  44. Tieman, D. M., Harriman, R. W., Ramamohan, G. & Handa, A. K. An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4, 667 –679 (1992).

    Article  CAS  Google Scholar 

  45. Brummell, D. A., Hall, B. D. & Bennett, A. B. Antisense suppression of tomato endo-1,4-β-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol. Biol. 40, 615–622 (1999).

    Article  CAS  Google Scholar 

  46. Rose, J. K. C., Lee, H. H. & Bennett, A. B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc. Natl Acad. Sci. USA 94 , 5955–5960 (1997).

    Article  ADS  CAS  Google Scholar 

  47. Brummell, D. A. et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11, 2203–2216 (1999).

    Article  CAS  Google Scholar 

  48. Civello, P. M., Powell, A. L. T., Sabehat, A. & Bennett, A. B. An expansin gene expressed in ripening strawberry fruit. Plant Physiol. 121, 1273–1279 (1999).

    Article  CAS  Google Scholar 

  49. Rose, J. K. C., Cosgrove, D. J., Albersheim, P., Darvill, A. G. & Bennett, A. B. Detection of expansin proteins and activity during tomato fruit ontogeny. Plant Physiol. (in the press).

  50. Cosgrove, D. J. Relaxation in a high-stress environment: The molecular bases of extensible cell walls and cell enlargement. Plant Cell 9, 1031–1041 (1997).

    Article  CAS  Google Scholar 

  51. Durachko, D. M. & Cosgrove, D. J. Expression patterns for selective expansin genes in Arabidopsis. Annu. Meeting Am. Soc. Plant Physiol. Abstr. 56 ( 1999).

  52. Im, K. H., Cosgrove, D. J. & Jones, A. M. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 123, 463– 470 (2000).

    Article  CAS  Google Scholar 

  53. Fenwick, K. M., Apperley, D. C., Cosgrove, D. J. & Jarvis, M. C. Polymer mobility in cell walls of cucumber hypocotyls. Phytochem. 51, 17–22 ( 1999).

    Article  CAS  Google Scholar 

  54. Grobe, K., Becker, W. M. & Petersen, A. Grass group I allergens (β-expansins) are novel, papain-related proteinases. Eur. J. Biochem. 263, 33–40 (1999).

    Article  CAS  Google Scholar 

  55. McQueen-Mason, S. & Cosgrove, D. J. Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension. Proc. Natl Acad. Sci. USA 91, 6574–6578 (1994).

    Article  ADS  CAS  Google Scholar 

  56. Jervis, E. J., Haynes, C. A. & Kilburn, D. G. Surface diffusion of cellulases and their isolated binding domains on cellulose. J. Biol. Chem. 272, 24016–24023 (1997).

    Article  CAS  Google Scholar 

  57. Cosgrove, D. J. Biophysical control of plant cell growth. Annu. Rev. Plant Physiol. 37, 377–405 ( 1986).

    Article  CAS  Google Scholar 

  58. Whitney, S. E. C., Gidley, M. J. & McQueen-Mason, S. Probing expansin action using cellulose/hemicellulose composites. Plant J. 22, 327– 334 (2000).

    Article  CAS  Google Scholar 

  59. Cosgrove, D. J., Durachko, D. M. & Li, L.-C. Expansins may have cryptic endoglucanase activity and can synergize the breakdown of cellulose by fungal cellulases. Annu. Meeting Am. Soc. Plant Physiol. Abstr. 171 ( 1998).

  60. De Marino, S. et al. An immunoglobulin-like fold in a major plant allergen: the solution structure of Phl p 2 from timothy grass pollen. Struct. Fold Des. 7, 943–952 ( 1999).

    Article  CAS  Google Scholar 

  61. Fedorov, A. A., Ball, T., Valenta, R. & Almo, S. C. X-ray crystal structures of birch pollen profilin and Phl p 2. Int. Arch. Allergy Immunol. 113, 109–113 ( 1997).

    Article  CAS  Google Scholar 

  62. Toone, E. J. Structure and energetics of protein-carbohydrate complexes. Curr. Opin. Struct. Biol. 4, 719–728 (1994).

    Article  CAS  Google Scholar 

  63. Mattinen, M. L., Linder, M., Drakenberg, T. & Annila, A. Solution structure of the cellulose-binding domain of endoglucanase I from Trichoderma reesei and its interaction with cello-oligosaccharides. Eur. J. Biochem. 256, 279–286 (1998).

    Article  CAS  Google Scholar 

  64. Henrissat, B., Teeri, T. T. & Warren, R. A. J. A scheme for designating enzymes that hydrolyse the polysaccharides in the cell walls of plants. FEBS Lett. 425, 352–354 (1998).

    Article  CAS  Google Scholar 

  65. Davies, G. J. et al. Structure and function of endoglucanase V. Nature 365, 362–364 ( 1993).

    Article  ADS  CAS  Google Scholar 

  66. Fry, S. C. Polysaccharide-modifying enzymes in the plant cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 497– 520 (1995).

    Article  CAS  Google Scholar 

  67. McQueen-Mason, S., Fry, S. C., Durachko, D. M. & Cosgrove, D. J. The relationship between xyloglucan endotransglycosylase and in vitro cell wall extension in cucumber hypocotyls. Planta 190, 327–331 (1993).

    Article  CAS  Google Scholar 

  68. Guex, N. & Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by the US National Science Foundation, the Department of Energy and the Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosgrove, D. Loosening of plant cell walls by expansins. Nature 407, 321–326 (2000). https://doi.org/10.1038/35030000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing