Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

LDL-receptor-related proteins in Wnt signal transduction

Abstract

The Wnt family of secreted signalling molecules are essential in embryo development and tumour formation1. The Frizzled (Fz) family of serpentine receptors function as Wnt receptors2,3,4,5,6,7,8,9,10, but how Fz proteins transduce signalling is not understood. In Drosophila , arrow phenocopies the wingless (DWnt-1) phenotype11, and encodes a transmembrane protein11 that is homologous to two members of the mammalian low-density lipoprotein receptor (LDLR)-related protein (LRP) family, LRP5 and LRP6 (refs 12,13,14, 15). Here we report that LRP6 functions as a co-receptor for Wnt signal transduction. In Xenopus embryos, LRP6 activated Wnt–Fz signalling, and induced Wnt responsive genes, dorsal axis duplication and neural crest formation. An LRP6 mutant lacking the carboxyl intracellular domain blocked signalling by Wnt or Wnt–Fz, but not by Dishevelled or β-catenin, and inhibited neural crest development. The extracellular domain of LRP6 bound Wnt-1 and associated with Fz in a Wnt-dependent manner. Our results indicate that LRP6 may be a component of the Wnt receptor complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LRP6/LRP5 in Wnt signalling.
Figure 2: LRP6 in neural crest formation.
Figure 3: LRP6 functions in Wnt-responding cells.
Figure 4: LRP6 functions upstream of Dsh protein and is antagonized by FRP.
Figure 5: LRP6 extracellular domain binds Wnt-1 and complexes with mFz8CRD in the presence of Wnt-1.

Similar content being viewed by others

References

  1. Wodarz, A. & Nusse, R. Mechanisms of Wnt signalling in development. Annu. Rev. Cell Dev. Biol. 14, 59– 88 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Bhanot, P. et al. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 382, 225– 230 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Yang-Snyder, J., Miller, J. R., Brown, J. D., Lai, C. J. & Moon, R. T. A frizzled homolog functions in a vertebrate Wnt signalling pathway. Curr. Biol. 6, 1302–1306 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. He, X. et al. A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science 275, 1652– 1654 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Bhat, K. M. frizzled and frizzled 2 play a partially redundant role in wingless signalling and have similar requirements to wingless in neurogenesis. Cell 95, 1027–1036 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  6. Kennerdell, J. R. & Carthew, R. W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017– 1026 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Muller, H., Samanta, R. & Wieschaus, E. Wingless signalling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development 126, 577–586 ( 1999).

    CAS  PubMed  Google Scholar 

  8. Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl Acad. Sci. USA 96, 3546–3551 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhanot, P. et al. Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 126, 4175–4186 ( 1999).

    CAS  PubMed  Google Scholar 

  10. Chen, C. M. & Struhl, G. Wingless transduction by the Frizzled and Frizzled2 proteins of Drosophila. Development 126, 5441–5452 (1999).

    CAS  PubMed  Google Scholar 

  11. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527 –530 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Brown, S. D. et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem. Biophys. Res. Commun. 248, 879–888 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Hey, P. J. et al. Cloning of a novel member of the low-density lipoprotein receptor family. Gene 216, 103–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, D. H. et al. A new low density lipoprotein receptor related protein, LRP 5, is expressed in hepatocytes and adrenal cortex, and recognizes apolipoprotein E. J. Biochem. (Tokyo) 124, 1072– 1076 (1998).

    Article  CAS  Google Scholar 

  15. Dong, Y. et al. Molecular cloning and characterization of LR3, a novel LDL receptor family protein with mitogenic activity. Biochem. Biophys. Res. Commun. 251, 784–790 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  16. Pinson, K. I., Brennan, J., Monkley, S., Avery, B & Skarnes, W. C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535– 538 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Harland, R. M. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Ikeya, M., Lee, S. M. K., Johnson, J. E., McMahon, A. P. & Takada, S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Saint-Jeannet, J.-P., He, X., Varmus, H. E. & Dawid, I. B. Regulation of dorsal fate in the neuraxis by Wnt-1 and Wnt-3a. Proc. Natl Acad. Sci. USA 94, 13713–13718 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, C. & Hemmati-Brivanlou, A. Neural crest induction by Xwnt7B in Xenopus. Dev. Biol. 194, 129–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. LaBonne, C. & Bronner-Fraser, M. Neural crest induction in Xenopus: evidence for a two signal model. Development 125, 2403–2414 (1998).

    CAS  PubMed  Google Scholar 

  22. Dorsky, R. I., Moon, R. T. & Raible, D. W. Control of neural crest cell fate by the Wnt signalling pathway. Nature 396, 370– 373 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Sumanas, S., Strege, P., Heasman, J., & Ekker, S. C. The putative Wnt receptor Xenopus frizzled-7 functions upstream of β-catenin in vertebrate dorsoventral mesoderm patterning. Development 127, 1981–1990 (2000).

    CAS  PubMed  Google Scholar 

  24. Zeng, L. et al. The mouse fused locus encodes Axin, an inhibitor of the Wnt signalling pathway that regulates embryonic axis formation. Cell 90, 181–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Finch, P. W. et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc. Natl Acad. Sci. USA 94, 6770–6775 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perrimon, N. & Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404 , 725–728 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Trommsdorff, M. et al. Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97, 689–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Kato, Y., Shi, Y. & He, X. Neuralization of the Xenopus embryo by inhibition of p300/CBP function. J. Neuroscience 19, 9346– 9373 (1999).

    Article  Google Scholar 

  30. Shimizu, H. et al. Transformation by Wnt family proteins correlates with regulation of β-catenin. Cell Growth Differ. 8, 1349–1358 (1997).

    MathSciNet  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Semenova for technical assistance; J. Heitz, J. Kitajewski, J. Nathans, S. Sokol, D. Sussman and A. Parlow (NHPP) for reagents; S. DiNardo and B. Skarnes for communication; and R. Habas, Z. He and Q. Ma for comments. X.H. acknowledges supports from Johnson and Johnson, the US Army, Susan G. Komen Foundation and the NIH. J.-P.S.-J. acknowledges supports from Johnson and Johnson and Whitehall Foundation. X.H. is a Pew Scholar and Klingenstein Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamai, K., Semenov, M., Kato, Y. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000). https://doi.org/10.1038/35035117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35035117

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing