Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A common E2F-1 and p73 pathway mediates cell death induced by TCR activation

Abstract

Strong stimulation of the T-cell receptor (TCR) on cycling peripheral T cells causes their apoptosis by a process called TCR-activation-induced cell death (TCR-AICD)1,2,3. TCR-AICD occurs from a late G1 phase cell-cycle check point4 independently of the ‘tumour suppressor’ protein p53 (refs 5, 6). Disruption of the gene for the E2F-1 transcription factor7,8, an inducer of apoptosis9,10,11, causes significant increases in T-cell number and splenomegaly12,13,14,15. Here we show that T cells undergoing TCR-AICD induce the p53-related gene p73, another mediator of apoptosis16, which is hypermethylated in lymphomas17,18. Introducing a dominant-negative E2F-1 protein or a dominant-negative p73 protein into T cells protects them from TCR-mediated apoptosis, whereas dominant-negative E2F-2, E2F-4 or p53 does not. Furthermore, E2F-1-null or p73-null primary T cells do not undergo TCR-mediated apoptosis either. We conclude that TCR-AICD occurs from a late G1 cell-cycle checkpoint that is dependent on both E2F-1 and p73 activities. These observations indicate that, unlike p53, p73 serves to integrate receptor-mediated apoptotic stimuli.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCR-AICD occurs from late G1 phase and is E2F-1-dependent.
Figure 2: TCR-AICD induces p73 protein levels.
Figure 3: TCR-AICD is p73-dependent.
Figure 4: Primary T cells require E2F-1 and p73 to undergo TCR-AICD.

Similar content being viewed by others

References

  1. Jones, L. A., Chin, L. T., Longo, D. L. & Kruisbeek, A. M. Peripheral clonal elimination of functional T cells. Science 250, 1726–1729 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rocha, B. & von Boehmer, H. Peripheral selection of the T cell repertoire. Science 251, 1225– 1228 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Kabelitz, D., Pohl, T. & Pechhold, K. Activation-induced cell death (apoptosis) of mature peripheral T lymphocytes. Immunol. Today 14, 338–339 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Lissy, N. A. et al. TCR antigen-induced cell death occurs from a late G1 phase cell cycle check point. Immunity 8, 57– 65 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Boehme, S. A. & Lenardo, M. J. TCR-mediated death of mature T lymphocytes occurs in the absence of p53. J. Immunol. 156, 4075–4078 (1996).

    CAS  PubMed  Google Scholar 

  6. Malcomson, R. D. et al. Apoptosis induced by gamma-irradiation, but not CD4 ligation, of peripheral T lymphocytes in vivo is p53-dependent. J. Pathol. 181, 166–171 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  7. Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nevins, J. R. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9, 585– 593 (1998).

    CAS  PubMed  Google Scholar 

  9. Qin, X. Q., Livingston, D. M., Kaelin, W. G. & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91 , 10918–10922 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. DeGregori, J., Leone, G., Miron, A., Jakoi, L. & Nevins, J. R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl Acad. Sci. USA 94, 7245–7250 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85, 537–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Field, S. J. et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549– 561 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, J. W., DeRyckere, D., Li, F. X., Wan, Y. Y. & DeGregori, J. A role for E2F-1 in the induction of ARF, p53, and apoptosis during thymic negative selection. Cell Growth Differ. 10, 829–838 (1999).

    CAS  PubMed  Google Scholar 

  15. Garcia, I., Murga, M., Vicario, A., Field, S. J. & Zubiaga, A. M. A role for E2F-1 in the induction of apoptosis during thymic negative selection. Cell Growth Differ. 11, 91–98 (2000).

    CAS  PubMed  Google Scholar 

  16. Jost, C. A., Marin, M. C. & Kaelin, W. G. p73 is a human p53-related protein that can induce apoptosis. Nature 389, 191– 194 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Corn, P. G. Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt's lymphoma is associated with 5′ CpG island methylation. Cancer Res. 59, 3352–3356 (1999).

    CAS  PubMed  Google Scholar 

  18. Kawano, S. et al. Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94, 1113– 1120 (1999).

    CAS  PubMed  Google Scholar 

  19. Smith, C. A., Williams, G. T., Kingston, R., Jenkinson, E. J. & Owen, J. J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337, 181–184 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Nagahara, H. et al. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nature Med. 4, 1449–1452 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215– 221 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. De Laurenzi, V. D. et al. Additional complexity in p73: induction by mitogens in lymphoid cells and identification of two new splicing variants epsilon and zeta. Cell Death Differ. 6, 389–390 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Kaelin, W. G. The p53 gene family. Oncogene 18, 7701– 7705 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Lomax, M. E., Barnes, D. M., Hupp, T. R., Picksley, S. M. & Camplejohn, R. S. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Davison, T. S., Yin, P., Nie, E., Kay, C. & Arrowsmith, C. H. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene 17, 651–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, A. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404, 99–103 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Kovalev, S., Marchenko, N., Swendeman, S., LaQuaglia, M. & Moll, U. M. Expression level, allelic origin, and mutation analysis of the p73 gene in neuroblastoma tumors and cell lines. Cell Growth Differ. 9, 897– 903 (1998).

    CAS  PubMed  Google Scholar 

  29. Marin, M. C. et al. Viral oncoproteins discriminate between p53 and the p53 homolog p73. Mol. Cell. Biol. 18, 6316– 6324 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abrams, S. I. & Russell, J. H. CD4+ T lymphocyte-induced target cell detachment. A model for T cell-mediated lytic and nonlytic inflammatory processes. J. Immunol. 146, 405– 413 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Lees and F. McKeon for providing E2F-1- and p73-null spleens, respectively, and J. Russell for anti-murine CD3 antibodies. This work was supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Dowdy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lissy, N., Davis, P., Irwin, M. et al. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation . Nature 407, 642–645 (2000). https://doi.org/10.1038/35036608

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036608

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing