Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of allergy in the development of asthma

Abstract

Recent studies have shown that initial sensitization to airborne environmental allergens occurs typically in early childhood, but subsequent progression to persistent atopic asthma, which may not manifest for several years, is restricted to only a subset of atopics. The key to establishing the link between atopy and asthma lies in the development of persistent inflammation in the airway wall, resulting in structural and functional changes in local tissues which are responsible for the symptoms of the disease. This review summarizes recent findings on the nature of the cellular and molecular mechanisms underlying this process, and addresses the issue of why the intensity and duration of these tissue-damaging responses in the airway wall apparently exceeds the critical threshold required for development of persistent asthma in only a minority of allergy sufferers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major cell types implicated in the pathogenesis of acute and chronic allergic reactions.
Figure 2: Transverse sections of the central airway from a subject with chronic asthma.
Figure 3: Progression from primary allergic sensitization in early childhood to atopic asthma in later life.

Similar content being viewed by others

Notes

  1. *Terms in italic are defined in the glossary on p. 39.

References

  1. Barnes, P. J., Chung, K. F. & Page, C. P. Inflammatory mediators of asthma: an update. Pharmacol. Rev. 50, 515–596 (1998).

    CAS  PubMed  Google Scholar 

  2. O'Byrne, P. M. Leukotrienes in the pathogenesis of asthma. Chest 111 , 27S–34S (1997).

    Article  CAS  Google Scholar 

  3. Galli, S. J. & Costa, J. J. Mast-cell-leukocyte cytokine cascades in allergic inflammation. Allergy 50, 851 –862 (1995).

    Article  CAS  Google Scholar 

  4. Coffman, R. L. et al. The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol. Rev. 102, 5–28 (1988).

    Article  CAS  Google Scholar 

  5. Hogan, S. P., Koskinen, A., Matthaei, K. I., Young, I. G. & Foster, P. S. IL-5 producing CD4+ T-cells play a pivotal role in the induction of eosinophilia and allergic airways disease in mice. Am. J. Respir. Crit. Care Med. 157, 210–218 (1998).

    Article  CAS  Google Scholar 

  6. Kay, A. B. in Allergy and Allergic Diseases (ed. Kay, A. B. ) 23– 35 (Blackwell Science, Oxford, 1997).

  7. Dugas, B. et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur. J. Immunol. 23, 1687–1692 (1993).

    Article  CAS  Google Scholar 

  8. Petit-Frere, C., Dugas, B., Braquet, P. & Mencia-Huerta, J. M. Interleukin-9 potentiates the interleukin-4-induced IgE and IgG1 release from murine B lymphocytes. Immunology 79, 146–151 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kung, T. T., Stelts, D. & Zurcher, J. A. Mast cells modulate allergic pulmonary eosinophilia in mice. Am. J. Respir. Cell Mol. Biol. 12, 404–409 (1995).

    Article  CAS  Google Scholar 

  10. Wershil, B. K., Wang, Z. -S., Gordon, J. R. & Galli, S. J. Recruitment of neutrophils during IgE-dependent cutaneous late phase reactions in the mouse is mast cell-dependent. J. Clin. Invest. 87, 446–453 (1991).

    Article  CAS  Google Scholar 

  11. Wierenga, E. A. et al. Evidence for compartmentalization of functional subsets of CD2+ T lymphocytes in atopic patients. J. Immunol. 144, 4651–4656 ( 1990).

    CAS  PubMed  Google Scholar 

  12. Romagnani, S. Human TH1 and TH2 subsets: doubt no more. Immunol. Today 12, 256–257 (1991).

    Article  CAS  Google Scholar 

  13. Essayan, D. M., Han, W. -F., Xiao, H. -Q., Kleine-Tebbe, J. & Huang, S. -K. Clonal diversity of IL-4 and IL-13 expression in human allergen-specific T lymphocytes. J. Allergy Clin. Immunol. 98, 1035–1044 (1996).

    Article  CAS  Google Scholar 

  14. Byron, K. A., O'Brien, R. M., Varigos, G. A. & Wootton, A. M. Dermatophagoides pteronyssinus II-induced interleukin-4 and interferon-γ expression by freshly isolated lymphocytes of atopic individuals. Clin. Exp. Allergy 24, 878–883 (1994).

    Article  CAS  Google Scholar 

  15. Prescott, S. L. et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T-cell responses towards the Th-2 cytokine profile. J. Immunol. 160, 4730– 4737 (1998).

    CAS  PubMed  Google Scholar 

  16. Wegmann, T. G., Lin, H., Guilbert, L. & Mosmann, T. R. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a Th2 phenomenon? Immunol. Today 14, 353 –356 (1993).

    Article  CAS  Google Scholar 

  17. Holt, P. G. & Macaubas, C. Development of long term tolerance versus sensitisation to environmental allergens during the perinatal period. Curr. Opin. Immunol. 9, 782– 787 (1997).

    Article  CAS  Google Scholar 

  18. Holt, P. G. et al. T-cell “priming” against environmental allergens in human neonates: sequential deletion of food antigen specificities during infancy with concomitant expansion of responses to ubiquitous inhalant allergens. Pediatr. Allergy Immunol. 6, 85– 90 (1995).

    Article  CAS  Google Scholar 

  19. Yabuhara, A. et al. Th-2-polarised immunological memory to inhalant allergens in atopics is established during infancy and early childhood. Clin. Exp. Allergy 27, 1261–1269 (1997).

    Article  CAS  Google Scholar 

  20. Prescott, S. L. et al. Development of allergen-specific T-cell memory in atopic and normal children. Lancet 353, 196– 200 (1999).

    Article  CAS  Google Scholar 

  21. Holt, P. G. Environmental factors and primary T-cell sensitisation to inhalant allergens in infancy: reappraisal of the role of infections and air pollution. Pediatr. Allergy Immunol. 6, 1–10 (1995).

    Article  Google Scholar 

  22. Holt, P. G. et al. Genetic ‘risk’ for atopy is associated with delayed postnatal maturation of T-cell competence. Clin. Exp. Allergy 22, 1093–1099 (1992).

    Article  CAS  Google Scholar 

  23. Holt, P. G., Sly, P. D. & Björkstén, B. Atopic versus infectious diseases in childhood: a question of balance? Pediatr. Allergy Immunol. 8, 53–58 (1997).

    Article  CAS  Google Scholar 

  24. Strachan, D. P. Hay fever, hygiene, and household size. Br. Med. J. 299, 1259–1260 (1989).

    Article  CAS  Google Scholar 

  25. Martinez, F. D. Role of viral infections in the inception of asthma and allergies during childhood: could they be protective? Thorax 49, 1189 –1191 (1994).

    Article  CAS  Google Scholar 

  26. Baldini, M. et al. A polymorphism in the 5′-flanking region of the CD14 gene is associated with circulating soluble CD14 levels with total serum IgE. Am. J. Respir. Cell Mol. Biol. 20, 976– 983 (1999).

    Article  CAS  Google Scholar 

  27. Landau, L. I. in Pediatric Respiratory Medicine (ed. Taussig, L. M. et al.) 935–938 (Mosby, St Louis, 1999).

    Google Scholar 

  28. Johnston, S. L. Viruses and asthma. Allergy 53, 922– 932 (1998).

    Article  CAS  Google Scholar 

  29. Macklem, P. T. Bronchial hyporesponsiveness. Chest 87, 158S–159S (1985).

    Article  Google Scholar 

  30. Kraft, M., Djukanovic, R., Wilson, S., Holgate, S. T. & Martin, R. J. Alveolar tissue inflammation in asthma. Am. J. Respir. Crit. Care Med. 154, 1505–1510 (1996).

    Article  CAS  Google Scholar 

  31. Ohuri, T. et al. Partitioning of pulmonary responses to inhaled methacholine in subjects with asymptomatic asthma. Am. Rev. Respir. Dis. 146, 1501–1505 (1992).

    Article  Google Scholar 

  32. Sly, P. D. & Lanteri, C. J. Partitioning of pulmonary responses to inhaled methacholine in puppies. J. Appl. Physiol. 71, 886–891 (1991).

    Article  CAS  Google Scholar 

  33. Hantos, Z., Petak, F., Adamicza, A., Daroczy, B. & Fredberg, J. J. Differential responses of global airway, terminal airway and tissue impedances to histamine. J. Appl. Physiol. 79, 1440–1448 (1995).

    Article  CAS  Google Scholar 

  34. Sly, P. D., Hayden, M. J., Petak, F. & Hantos, Z. Measurement of low-frequency respiratory impedance in infants. Am. J. Respir. Crit. Care Med. 154, 161–166 (1996).

    Article  CAS  Google Scholar 

  35. Armour, C. et al. Mediators on human airway smooth muscle. Clin. Exp. Pharmacol. Physiol. 24, 269–272 (1997).

    Article  CAS  Google Scholar 

  36. Brewster, C. E. P. et al. Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am. J. Respir. Crit. Care Med. 3, 507– 511 (1990).

    CAS  Google Scholar 

  37. Gizycki, M. J., Adelröth, E., Rogers, A. V., O'Byrne, P. M. & Jeffrey, P. K. Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am. J. Respir. Crit. Care Med. 16, 664–673 (1997).

    CAS  Google Scholar 

  38. Zhang, S., Smartt, H., Holgate, S. T. & Roche, W. R. Growth factors secreted by bronchial epithelial cells control myofibroblast proliferation: an in vitro co-culture model of airway remodelling in asthma. Lab. Invest. 79, 395–405 (1999).

    CAS  PubMed  Google Scholar 

  39. Foster, P. S. H. S., Ramsay, A. J., Matthaei, K. I. & Young, I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183, 195–201 (1996).

    Article  CAS  Google Scholar 

  40. Renz, H. et al. Specific Vb T cell subsets mediate the immediate hypersensitivity response to ragweed allergen. J. Immunol. 151, 1907–1917 (1993).

    CAS  PubMed  Google Scholar 

  41. Mishima, H., Hojo, M., Watanade, A., Hamid, Q. & Martin, J. G. CD4+ T cells can induce airway hyperresponsiveness to allergen challenge in the brown Norway rat. Am. J. Respir. Crit. Care Med. 158, 1863–1870 (1998).

    Article  CAS  Google Scholar 

  42. Lee, J. J. et al. Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J. Exp. Med. 185, 2143–2156 ( 1997).

    Article  CAS  Google Scholar 

  43. Tang, W. et al. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodelling, and airways obstruction. J. Clin. Invest. 98, 2845–2853 (1996).

    Article  CAS  Google Scholar 

  44. DiCosmo, B. F. et al. Airway epithelial cell expression of interleukin-6 in transgenic mice. Uncoupling of airway inflammation and bronchial hyperreactivity. J. Clin. Invest. 94, 2028–2035 (1994).

    Article  CAS  Google Scholar 

  45. Knight, D. H., Lydell, C. P., Zhou, D., Schellenberg, R. R. & Bai T. R. Distribution of leukaemia inhibitory factor (LIF) and its receptor in lung. Effect of IL-1β and IL-6 on gene expression and LIF release. Am. J. Respir. Cell Mol. Biol. 20, 834– 841 (1999).

    Article  CAS  Google Scholar 

  46. Grunig, G. W. M. et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282, 2261– 2263 (1998).

    Article  ADS  CAS  Google Scholar 

  47. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 ( 1998).

    Article  ADS  CAS  Google Scholar 

  48. Woolcock, A. J., Peat, J. K. & Trevillion, L. M. Is the increase in asthma prevalence linked to increase in allergen load? Allergy 50, 935– 940 (1995).

    Article  CAS  Google Scholar 

  49. Johnston, S. L. et al. The relationship between upper respiratory infections and hospital admissions for asthma: a time-trend analysis. Am. J. Respir. Crit. Care Med. 154, 654–660 (1996).

    Article  CAS  Google Scholar 

  50. Peat, J. K. et al. House dust mite allergens: a major risk factor for childhood asthma in Australia. Am. J. Respir. Crit. Care Med. 153, 141–146 (1996).

    Article  CAS  Google Scholar 

  51. Michel, O. et al. Dose-response relationship to inhaled endotoxin in normal subjects. Am. J. Respir. Crit. Care Med. 156, 1157–1164 (1997).

    Article  CAS  Google Scholar 

  52. Von Mutius, E. Progression of allergy and asthma through childhood to adolescence. Thorax S1, S3–S6 ( 1996).

    Article  Google Scholar 

  53. Bingisser, R. M., Tilbrook, P. A., Holt, P. G. & Kees, U. R. Macrophage-derived nitric oxide regulates T-cell activation via reversible disruption of the Jak3/Stat5 signalling pathway. J. Immunol. 160, 5729–5734 (1998).

    CAS  PubMed  Google Scholar 

  54. Liew, F. Y. Regulation of lymphocyte functions by nitric oxide. Curr. Opin. Immunol. 7, 396–399 ( 1995).

    Article  CAS  Google Scholar 

  55. Barnes, P. J. Reactive oxygen species and airway inflammation. Free Radical Biol. Med. 9, 235–253 ( 1990).

    Article  CAS  Google Scholar 

  56. Holt, P. G. et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 177, 397–407 (1993).

    Article  CAS  Google Scholar 

  57. Stumbles, P. A. et al. Resting respiratory tract Dendritic Cells preferentially stimulate Th2 responses and require obligatory cytokine signals for induction of Th1 immunity. J. Exp. Med. 188, 2019– 2031 (1998).

    Article  CAS  Google Scholar 

  58. Poston, R. N. et al. Immunohistochemical characterisation of the cellular infiltration in asthmatic bronchi. Am. Rev. Respir. Dis. 145, 918–921 (1992).

    Article  CAS  Google Scholar 

  59. Moller, G. M. et al. Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin. Exp. Allergy 26, 517–524 (1996).

    Article  CAS  Google Scholar 

  60. Godthelp, T. et al. Antigen presenting cells in the nasal mucosa of patients with allergic rhinitis during allergen provocation. Clin. Exp. Allergy 26, 677–688 ( 1996).

    Article  CAS  Google Scholar 

  61. Tunon-de-lara, J. M. et al. Dendritic cells in normal and asthmatic airways: expression of the α subunit of the high affinity immunoglobulin E receptor (FcεRI-α). Clin. Exp. Allergy 26, 648–655 (1996).

    Article  CAS  Google Scholar 

  62. Lambrecht, B. N., Salomon, B., Klatzmann, D. & Pauwels, R. A. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice. J. Immunol. 160, 4090–4097 (1998).

    CAS  PubMed  Google Scholar 

  63. Strickland, D. H., Kees, U. R. & Holt, P. G. Regulation of T-cell activation in the lung: alveolar macrophages induce reversible T-cell anergy in vivo associated with inhibition of IL-2R signal transduction. Immunology 87, 250–258 (1996).

    Article  CAS  Google Scholar 

  64. Poulter, L. W., Janossy, G., Power, C., Sreenan, S. & Burke, C. Immunological/physiological relationships in asthma: potential regulation by lung macrophages. Immunol. Today 15, 258–261 (1994).

    Article  CAS  Google Scholar 

  65. Borish, L. & Rosenwasser, L. TH1//TH2 lymphocytes: doubt some more. J. Allergy Clin. Immunol. 99, 161–164 (1997).

    Article  CAS  Google Scholar 

  66. Borish, L. et al. Interleukin-10 regulation in normal subjects and patients with asthma. J. Allergy Clin. Immunol. 97, 1288–1296 (1996).

    Article  CAS  Google Scholar 

  67. Macaubas, C. et al. Regulation of Th-cell responses to inhalant allergen during early childhood. Clin. Exp. Allergy 29, 1223–1231 (1999).

    Article  CAS  Google Scholar 

  68. Rott, L. S. et al. Expression of mucosal homing receptor α4β7 by circulating CD4+cells with memory for intestinal rotavirus. J. Clin. Invest. 100, 1204–1208 (1997).

    Article  CAS  Google Scholar 

  69. Ying, S. et al.Expression of IL-4 and IL-5 mRNA and protein product by CD4+ and CD8+ T cells, eosinophils and mast cells in bronchial biopsies obtained from atopic and non-atopic (intrinsic asthmatics). J. Immunol. 158, 3539–3544 (1997).

    CAS  PubMed  Google Scholar 

  70. Maestrelli, P. et al. Cytokines in the airway mucosa of subjects with asthma induced by toluene diisocyanate. Am. J. Respir. Crit. Care Med. 151, 607–612 (1995).

    CAS  PubMed  Google Scholar 

  71. Holgate, S. The inflammation-repair cycle in asthma: the pivotal role of the airway epithelium. Clin. Exp. Allergy 28 S5, 97– 103 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, P., Macaubas, C., Stumbles, P. et al. The role of allergy in the development of asthma. Nature 402 (Suppl 6760), 12–17 (1999). https://doi.org/10.1038/35037009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing