Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch

Abstract

DNA mismatch repair ensures genomic integrity on DNA replication. Recognition of a DNA mismatch by a dimeric MutS protein initiates a cascade of reactions and results in repair of the newly synthesized strand; however, details of the molecular mechanism remain controversial. Here we present the crystal structure at 2.2 Å of MutS from Escherichia coli bound to a G·T mismatch. The two MutS monomers have different conformations and form a heterodimer at the structural level. Only one monomer recognizes the mismatch specifically and has ADP bound. Mismatch recognition occurs by extensive minor groove interactions causing unusual base pairing and kinking of the DNA. Nonspecific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. The interleaved nucleotide-binding sites are located far from the DNA. Mutations in human MutSα (MSH2/MSH6) that lead to hereditary predisposition for cancer, such as hereditary non-polyposis colorectal cancer, can be mapped to this crystal structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the MutS–DNA complex.
Figure 2: Mismatch-binding monomer coloured by domain.
Figure 3: Interaction of MutS with mismatched DNA.
Figure 4: ATPase domain of MutS.

Similar content being viewed by others

References

  1. Modrich, P. & Lahue, R. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65, 101–133 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  2. Kolodner, R. D. & Marsischky, G. T. Eukaryotic DNA mismatch repair. Curr. Opin. Genet. Dev. 9, 89–96 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Buermeyer, A. B., Deschenes, S. M., Baker, S. M. & Liskay, R. M. Mammalian DNA mismatch repair. Annu. Rev. Genet. 33 , 533–564 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Su, S. S., Lahue, R. S., Au, K. G. & Modrich, P. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J. Biol. Chem. 263, 6829–6835 (1988).

    CAS  PubMed  Google Scholar 

  5. Joshi, A., Sen, S. & Rao, B.J. ATP-hydrolysis-dependent conformational switch modulates the stability of MutS-mismatch complexes. Nucleic Acids Res. 28, 853–861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Biswas, I. & Vijayvargia, R. Heteroduplex DNA and ATP induced conformational changes of a MutS mismatch repair protein from Thermus aquaticus . Biochem. J. 347, 881– 886 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allen, D. J. et al. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 16, 4467– 4476 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blackwell, L. J., Bjornson, K. P. & Modrich, P. DNA-dependent activation of the hMutSα ATPase. J. Biol. Chem. 273, 32049– 32054 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Blackwell, L. J., Martik, D., Bjornson, K. P., Bjornson, E. S. & Modrich, P. Nucleotide-promoted release of hMutSα from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J. Biol. Chem. 273, 32055– 32062 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bjornson, K. P., Allen, D. J. & Modrich, P. Modulation of MutS ATP hydrolysis by DNA cofactors. Biochemistry 39, 3176– 3183 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gradia, S., Acharya, S. & Fishel, R. The human mismatch-recognition complex hMSH2–hMSH6 functions as a novel molecular switch. Cell 91, 995–1005 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gradia, S. et al. hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255– 261 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Gradia, S., Acharya, S. & Fishel, R. The role of mismatched nucleotides in activating the hMSH2–hMSH6 molecular switch. J. Biol. Chem. 275, 3922–2930, (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Galio, L., Bouquet, C. & Brooks, P. ATP hydrolysis-dependent formation of a dynamic ternary nucleoprotein complex with MutS and MutL. Nucleic Acids Res. 27, 2325–2331 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ban, C. & Yang, W. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95, 541–552 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Ban, C., Junop, M. & Yang, W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97, 85–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Lynch, H. T. & De La Chapelle, A. Genetic susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 36, 801–181 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Vogelstein, B. & Kinzler, K.W. The multistep nature of cancer. Trends Genet. 9, 138– 141 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Takamatsu, S., Kato, R. & Kuramitsu, S. Mismatch DNA recognition protein from an extremely thermophilic bacterium, Thermus thermophilus HB8. Nucleic Acids Res. 24, 640–647 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biswas, I. et al. Oligomerization of a MutS mismatch repair protein from Thermus aquaticus. J. Biol. Chem. 274, 23673–23678 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Holm, L. & Sander, C. Dali/FSSP classification of three-dimensional protein folds. Nucleic Acids Res. 25, 231 –234 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, H., Trotta, C. R. & Abelson, J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science 280, 279– 284 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Ariyoshi, M. et al. Atomic structure of the RuvC resolvase: a Holliday junction-specific endonuclease from E. coli. Cell 78, 1063–1072 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Hung, L. W. et al. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703–707 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Lavery, R. & Sklenar, H. Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667 ( 1989).

    Article  CAS  PubMed  Google Scholar 

  26. Hunter, W. N. Crystallographic studies of DNA containing mismatches, modified and unpaired bases. Methods Enzymol. 211, 221– 231 (1992).

    Article  CAS  PubMed  Google Scholar 

  27. Tsutakawa, S. E., Jingami, H. & Morikawa, K. Recognition of a TG mismatch: the crystal structure of very short patch repair endonuclease in complex with a DNA duplex. Cell 99, 615–623 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  28. Malkov, V. A., Biswas, I., Camerini-Otero, R. D. & Hsieh, P. Photocross-linking of the NH2-terminal region of Taq MutS protein to the major groove of a heteroduplex DNA. J. Biol. Chem. 272, 23811–23817 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Marra, G. & Schar, P. Recognition of DNA alterations by the mismatch repair system. Biochem. J. 338, 1–13 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hayward, S. & Berendsen, H. J. C. Systematic analysis of domain motions in proteins from conformational change; new results on citrate synthase and T4 lysozyme. Proteins Struct. Funct. Genet. 30, 144–154 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Sprang, S. R. G protein mechanisms: insights from structural analysis. Annu. Rev. Biochem. 66, 639–678 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Gerstein, M., Schulz, G. & Chothia, C. Domain closure in adenylate kinase. Joints on either side of two helices close like neighboring fingers. J. Mol. Biol. 229, 494–501 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  33. Iaccarino, I., Marra, G., Palombo, F. & Jiricny, J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSα. EMBO J. 17, 2677–2686 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Studamire, B., Quach, T. & Alani, E. Saccharomyces cerevisiae Msh2p and Msh6p ATPase activities are both required during mismatch repair. Mol. Cell. Biol. 18, 7590–7601 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Iaccarino, I., Marra, G., Dufner, P. & Jiricny, J. Mutation in the magnesium binding site of hMSH6 disables the hMutSα sliding clamp from translocating along DNA. J. Biol. Chem. 275, 2080–2086 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Habraken, Y., Sung, P., Prakash, L. & Prakash, S. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2–MSH6 and MLH1–PMS1 protein complexes. J. Biol. Chem. 273, 9837–9841 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, T. H. & Marinus, M. G. Deletion mutation analysis of the mutS gene in Escherichia coli. J. Biol. Chem. 274, 5948–5952 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Su, S. S. & Modrich, P. Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc. Natl. Acad. Sci. USA 83, 5057–5061 ( 1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panuska, J. R. & Goldthwait, D. A. A DNA-dependent ATPase from T4-infected Escherichia coli. Purification and properties of a 63,000-dalton enzyme and its conversion to a 22,000-dalton form. J. Biol. Chem. 255 5208–5214 (1980).

    CAS  PubMed  Google Scholar 

  40. Fishel, R. A., Siegel, E. C. & Kolodner, R. Gene conversion in Escherichia coli. Resolution of heteroallelic mismatched nucleotides by co-repair. J. Mol. Biol. 188, 147–157 ( 1986).

    Article  CAS  PubMed  Google Scholar 

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  42. Weeks, C. M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Crystallogr. 32, 120– 124 (1999).

    Article  CAS  Google Scholar 

  43. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  44. La Fortelle, E. de & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494 ( 1997).

    Article  PubMed  Google Scholar 

  45. Jones, T. A., Zou, J-Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  46. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  47. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D. 53, 240– 255 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Gouet, P., Courcelle, E., Stuart, D. I. & Metoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 15, 305–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Culligan, K. M., Meyer-Gauen, G., Lyons-Weiler, J. & Hays, J. B. Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins. Nucleic Acids Res. 28, 463–471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Marinus for MutS plasmid pMQ372 and purification protocols; P. Modrich for strain RK1517; S. Cusack and H. te Riele for support and enthusiasm; J. Tainer for useful suggestions; G. Sheldrick for discussions on twinning; C. Vonrhein for assistance with SHARP; K. Culligan and J. Hays for use of their alignment; and staff at the ESRF and EMBL outstations Hamburg and Grenoble, in particular G. Leonard, for support in data collection. This work was supported by the Dutch Cancer Society and an EMBO post-doctoral fellowship to A.P., and by European Union TMR/LSF grants for data collection visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Titia K. Sixma.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamers, M., Perrakis, A., Enzlin, J. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G·T mismatch. Nature 407, 711–717 (2000). https://doi.org/10.1038/35037523

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35037523

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing