Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function

Abstract

Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amino-acid sequences of IL21R and IL21.
Figure 2: Expression analysis of IL21R in normal tissues.
Figure 3: Flow cytometric analysis of IL21R expression.
Figure 4: Quantitative RT–PCR analysis of IL21 expression in lymphocyte subsets.
Figure 5: Effect of IL21 on the proliferative responses of human B cells.
Figure 6: IL21 co-stimulates anti-CD3 activated thymocytes and mature T cells.
Figure 7: IL21 synergizes with IL15 and Flt3L to enhance the proliferation and differentiation of NK cells from CD34+ bone marrow progenitors, and alone enhances the effector function of mature NK cells.

Similar content being viewed by others

References

  1. Wlodawer, A., Pavlovsky, A. & Gustchina, A. Hematopoietic cytokines: similarities and differences in the structures, with implications for receptor binding. Protein Sci. 2, 1373–1382 ( 1993).

    Article  CAS  Google Scholar 

  2. Cosman, D. The hematopoietin receptor superfamily. Cytokine 5, 95–106 (1993).

    Article  CAS  Google Scholar 

  3. Lok, S. et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature 369, 565–568 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Palacios, R. & Steinmetz, M. IL3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41, 727–734 (1985).

    Article  CAS  Google Scholar 

  5. Bazan, J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl Acad. Sci. USA 87, 6934– 6938 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Vigon, I. et al. Characterization of the murine Mpl proto-oncogene, a member of the hematopoietic cytokine receptor family: molecular cloning, chromosomal location and evidence for a function in cell growth. Oncogene 8, 2607–2615 (1993).

    CAS  PubMed  Google Scholar 

  7. Skoda, R. C. et al. Murine c-mpl: a member of the hematopoietic growth factor receptor superfamily that transduces a proliferative signal. EMBO J. 12, 2645–2653 ( 1993).

    Article  CAS  Google Scholar 

  8. Murakami, M. et al. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl Acad. Sci. USA 88, 11349–11353 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Drachman, J. G. & Kaushansky, K. Dissecting the thrombopoietin receptor: Functional elements of the Mpl cytoplasmic domain. Proc. Natl Acad. Sci. USA 94, 2350– 2355 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Gurney, A. L., Wong, S. C., Henzel, W. J. & De Sauvage, F. J. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and Shc phosphorylation. Proc. Natl Acad. Sci. USA 92, 5292–5296 ( 1995).

    Article  ADS  CAS  Google Scholar 

  11. von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14, 4683–4690 (1986).

    Article  CAS  Google Scholar 

  12. Hage, T., Sebald, W. & Reinemer, P. Crystal structure of the interleukin-4/receptor α chain complex reveals a mosaic binding interface. Cell 97, 271–281 (1999).

    Article  CAS  Google Scholar 

  13. Zurawski, S. M. et al. Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J. 12, 5113–5119 (1993).

    Article  CAS  Google Scholar 

  14. Gong, J. H., Maki, G. & Klingemann, H. G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8, 652–658 (1994).

    CAS  PubMed  Google Scholar 

  15. Mrozek, E., Anderson, P. & Caligiuri, M. A. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632–2640 ( 1996).

    CAS  PubMed  Google Scholar 

  16. Yu, H. et al. Flt3 ligand promotes the generation of a distinct CD34+ human natural killer cell progenitor that responds to interleukin-15. Blood 92, 3647–3657 (1998).

    CAS  PubMed  Google Scholar 

  17. Kammer, W. et al. Homodimerization of interleukin-4 receptor α chain can induce intracellular signaling. J. Biol. Chem. 271, 23634–23637 (1996).

    Article  CAS  Google Scholar 

  18. Sugamura, K. et al. The interleukin-2 receptor γ chain: Its role in the multiple cytokine receptor complexes and T cell development in XSCID. Annu. Rev. Immunol. 14, 179–205 (1996).

    Article  CAS  Google Scholar 

  19. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111– 135 (1998).

    Article  CAS  Google Scholar 

  20. Foy, T. M., Aruffo, A., Bajorath, J., Buhlmann, J. E. & Noelle, R. J. Immune regulation by CD40 and its ligand gp39. Annu. Rev. Immunol. 14, 591–617 (1996).

    Article  CAS  Google Scholar 

  21. Callard, R. E., Armitage, R. J., Fanslow, W. C. & Spriggs, M. K. CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol. Today 14, 559–564 ( 1993).

    Article  CAS  Google Scholar 

  22. Robertson, M. J. & Ritz, J. Biology and clinical relevance of human natural killer cells. Blood 76, 2421–2438 (1990).

    CAS  PubMed  Google Scholar 

  23. Whiteside, T. L., Vujanovic, N. L. & Herberman, R. B. Natural killer cells and tumor therapy. Curr. Top. Microbiol. Immunol. 230, 221– 244 (1998).

    CAS  PubMed  Google Scholar 

  24. Biron, C. A., Nguyen, K. B., Pien, G. C., Cousens, L. P. & Salazar-Mather, T. P. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  Google Scholar 

  25. Williams, N. S. et al. Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems. Immunol. Rev. 165, 47–61 ( 1998).

    Article  CAS  Google Scholar 

  26. Gubler, U. & Hoffman, B. J. A simple and very efficient method for generating cDNA libraries. Gene 25, 263–269 (1983).

    Article  CAS  Google Scholar 

  27. Morris, A. et al. in Animal Cell Technology (ed. Carrondo, M. J. T.) 529–534 (Kluwer Academic, The Netherlands, 1997).

    Book  Google Scholar 

  28. Stahl, N. et al. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 267, 1349–1353 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Dzaki, K., Kikly, K., Michalovich, D., Young, P. R. & Leonard, W. J. Cloning of a type I cytokine receptor most related to the IL-2 receptor β chain. Proc. Natl Acad. Sci. USA 97, 11439–11444 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Lehner, J. Rosser, S. McMillen, S. Matthews, J. Coleman, S. Sexson, A. Adan, W. Lint, K. Hodges, L. Smith, J. Rodriguez, C. Noriega, B. Dedinsky, K. Kontor, J. Gray, M. Rixon and R. Hoffman for technical assistance; and P. McKernan, J. Kelly, S. Jaspers, G. McKnight, G. Rosenberg, K. Swiderek, D. Prunkard, B. Persson, W. Kindsvogel and T. Bukowski for project advice. Nomenclature has been approved by HUGO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parrish-Novak, J., Dillon, S., Nelson, A. et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408, 57–63 (2000). https://doi.org/10.1038/35040504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35040504

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing