Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional interaction of phytochrome B and cryptochrome 2

Abstract

Light is a crucial environmental signal that controls many photomorphogenic and circadian responses in plants1. Perception and transduction of light is achieved by at least two principal groups of photoreceptors, phytochromes and cryptochromes2,3. Phytochromes are red/far-red light-absorbing receptors encoded by a gene family of five members (phyA to phyE)2,4 in Arabidopsis. Cryptochrome 1 (cry1), cryptochrome 2 (cry2) and phototropin are the blue/ultraviolet-A light receptors that have been characterized in Arabidopsis5. Previous studies showed that modulation of many physiological responses in plants is achieved by genetic interactions between different photoreceptors6; however, little is known about the nature of these interactions and their roles in the signal transduction pathway. Here we show the genetic interaction that occurs between the Arabidopsis photoreceptors phyB and cry2 in the control of flowering time, hypocotyl elongation and circadian period by the clock. PhyB interacts directly with cry2 as observed in co-immunoprecipitation experiments with transgenic Arabidopsis plants overexpressing cry2. Using fluorescent resonance energy transfer microscopy, we show that phyB and cry2 interact in nuclear speckles that are formed in a light-dependent fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiological and biochemical evidence for interaction between cry2 and phyB.
Figure 2: Effects of light on cry2–RFP subcellular distribution and colocalization with phyB–GFP in BY-2 cells.
Figure 3: FRET analysis of phyB–GFP and cry2–RFP interaction.
Figure 4: FRET microscopy by acceptor photobleaching.

Similar content being viewed by others

References

  1. Kendric, R. E. & Kronenberg, G. H. M. Photomorphogenesis in Plants (Kluwer Academic, Dordrecht, 1994).

    Book  Google Scholar 

  2. Quail, P. H. et al. Phytochromes: photosensory perception and signal transduction. Science 268, 675–680 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Cashmore, A. R., Jarillo, J. A., Wu, Y. & Liu, D. Cryptochromes: Blue light receptors for plants and animals. Science 284 , 760–765 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Chory, J. Light modulation of vegetative development. Plant Cell 9, 1225–1234 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Briggs, W. R. & Huala, E. Blue-light photoreceptors in higher plants. Annu. Rev. Cell Dev. Biol. 15, 33 –62 (1999).

    Article  CAS  Google Scholar 

  6. Casal, J. J. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem. Photobiol. 71, 1– 11 (2000).

    Article  CAS  Google Scholar 

  7. Somers, D. E., Devlin, P. F. & Kay, S. A. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282, 1488–1490 (1998).

    Article  CAS  Google Scholar 

  8. Millar, A. J., Straume, M., Chory, J., Chua, N. H. & Kay, S. A. The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267, 1163–1166 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Whitelam, G. C. & Devlin, P. F. Roles of different phytochromes in Arabidopsis photomorphogenesis. Plant Cell Environ. 20, 752–758 ( 1998).

    Article  Google Scholar 

  10. Guo, H., Yang, H., Mockler, T. C. & Lin, C. Regulation of flowering time by Arabidopsis photoreceptors. Science 279, 1360–1363 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Mockler, T. C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).

    CAS  PubMed  Google Scholar 

  12. Reed, J. W., Nagpal, P., Poole, D. S., Furuya, M. & Chory, J. Mutations in the gene for the red/far red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147–157 (1993).

    Article  CAS  Google Scholar 

  13. Lin, C. et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by blue light receptor cryptochrome 2. Proc. Natl Acad. Sci. USA 95, 2686–2690 ( 1998).

    Article  ADS  CAS  Google Scholar 

  14. Guo, H., Duong, H., Ma, N. & Lin, C. The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19, 279–287 ( 1999).

    Article  CAS  Google Scholar 

  15. Kleiner, O., Kircher, S., Harter, K. & Batschauer, A. Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 19, 289–296 ( 1999).

    Article  CAS  Google Scholar 

  16. Yamaguchi, R., Nakamura, M., Mochizuki, N., Kay, S. A. & Nagatani, A. Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis . J. Cell Biol. 145, 437– 445 (1999).

    Article  CAS  Google Scholar 

  17. Kircher, S. et al. Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11, 1445 –1456 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1– 13 (1994).

    Article  CAS  Google Scholar 

  19. Gadella, T. W. J., van der Krogt, G. N. M. & Bisseling, T. GFP-based FRET microscopy in living plant cells. Trends Plant Sci. 4, 287– 291 (1999).

    Article  Google Scholar 

  20. Bastiaens, P. I. H. & Jovin, T. M. in Cell Biology: A Laboratory Handbook (ed. Celis, J. E.) 136– 146 (Academic, New York, 1998).

    Google Scholar 

  21. Yeh, K. C. & Lagarias, J. C. Eukaryotic phytochromes: light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proc. Natl Acad. Sci. USA 95, 13976– 13981 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Ni, M., Tepperman, J. M. & Quail, P. H. PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix–loop–helix protein. Cell 95, 657–667 (1998).

    Article  CAS  Google Scholar 

  23. Fankhauser, C. et al. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284, 1539–1541 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Choi, G. et al. Phytochrome signalling is mediated through nucleoside diphosphate kinase 2. Nature 401, 610– 613 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Ahmad, M., Jarrillo, J. A., Smirnova, O. & Cashmore, A. R. The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome in vitro. Mol. Cell 1, 939– 948 (1998).

    Article  CAS  Google Scholar 

  26. Lamond, A. I. & Earnshaw, W. C. Structure and function in the nucleus. Science 280, 547– 553 (1998).

    Article  CAS  Google Scholar 

  27. Somers, D. E., Schultz, T. F., Milnamow, M. & Kay, S. A. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis . Cell 101, 319–329 (2000).

    Article  CAS  Google Scholar 

  28. Nelson, D. C., Lasswell, J., Rogg, L. E., Cohen, M. A. & Bartel, B. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340 ( 2000).

    Article  CAS  Google Scholar 

  29. Carrington, J. C., Freed, D. D. & Leinicke, A. J. Bipartite signal sequence mediates nuclear translocation of the plant potyviral NIa protein. Plant Cell 3, 953–962 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Más, P. & Beachy, R. N. Replication of tobacco mosaic virus on endoplasmic reticulum and role of the cytoskeleton and virus movement protein in intracellular distribution of viral RNA. J. Cell Biol. 147, 945–958 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. L. Harmer, T. F. Schultz and M. J. Yanovsky for critical comments of the manuscript. We are grateful to C. Lin for providing cry2 cDNA, the cry2 overexpression line and cry2 antibody. We also thank A. Nagatani for the phyB–GFP construct and anti-phyB antibody. We thank G. Patterson and D. Piston for GFP spectra data, and Clontech for DsRFP spectra data. We are grateful to D. Millar and T. K. Nomanbhoy for helpful discussion on FRET analysis. Research support came from the NIH. P.M. was supported by a Novartis Agricultural Discovery Institute and P.F.D. was supported by an European Molecular Biology Organization long-term fellowship and the NSF. S.P. was supported by TSRI graduate program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve A. Kay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Más, P., Devlin, P., Panda, S. et al. Functional interaction of phytochrome B and cryptochrome 2. Nature 408, 207–211 (2000). https://doi.org/10.1038/35041583

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041583

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing