Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional genomic analysis of C. elegans chromosome I by systematic RNA interference

Abstract

Complete genomic sequence is known for two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster , and it will soon be known for humans. However, biological function has been assigned to only a small proportion of the predicted genes in any animal. Here we have used RNA-mediated interference (RNAi) to target nearly 90% of predicted genes on C. elegans chromosome I by feeding worms with bacteria that express double-stranded RNA. We have assigned function to 13.9% of the genes analysed, increasing the number of sequenced genes with known phenotypes on chromosome I from 70 to 378. Although most genes with sterile or embryonic lethal RNAi phenotypes are involved in basal cell metabolism, many genes giving post-embryonic phenotypes have conserved sequences but unknown function. In addition, conserved genes are significantly more likely to have an RNAi phenotype than are genes with no conservation. We have constructed a reusable library of bacterial clones that will permit unlimited RNAi screens in the future; this should help develop a more complete view of the relationships between the genome, gene function and the environment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conservation of genes with an RNAi phenotype.
Figure 2: Distribution on chromosome I of genes with RNAi phenotypes and genes with ESTs.
Figure 3: Functional classes of Emb, Ste, Unc and Pep genes.

Similar content being viewed by others

References

  1. The C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012– 2018 (1998).

    Article  ADS  Google Scholar 

  2. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 ( 2000).

    Article  Google Scholar 

  3. Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).

    Article  CAS  Google Scholar 

  4. Ahringer, J. Turn to the worm! Curr. Opin. Genet. Dev. 7, 410–415 (1997).

    Article  CAS  Google Scholar 

  5. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Tabara, H., Grishok, A. & Mello, C. C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430– 431 (1998).

    Article  CAS  Google Scholar 

  7. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 ( 1998).

    Article  ADS  CAS  Google Scholar 

  8. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in C. elegans. Genome Biol. (in the press).

  9. Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80, 155–165 (1995).

    Article  CAS  Google Scholar 

  10. Bowerman, B. & Shelton, C. A. Cell polarity in the early Caenorhabditis elegans embryo. Curr. Opin. Genet. Dev. 9, 390–395 (1999).

    Article  CAS  Google Scholar 

  11. Bargmann, C. I. Neurobiology of the Caenorhabditis elegans genome. Science 282, 2028–2033 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Kim, J. G. & Hudson, L. D. Novel member of the zinc finger superfamily: A C2-HC finger that recognizes a glia-specific gene. Mol. Cell Biol. 12, 5632–5639 (1992).

    Article  CAS  Google Scholar 

  13. Armstrong, R. C., Kim, J. G. & Hudson, L. D. Expression of myelin transcription factor I (MyTI), a “zinc-finger” DNA- binding protein, in developing oligodendrocytes. Glia 14, 303–321 (1995).

    Article  CAS  Google Scholar 

  14. Kim, J. G. et al. Myelin transcription factor 1 (Myt1) of the oligodendrocyte lineage, along with a closely related CCHC zinc finger, is expressed in developing neurons in the mammalian central nervous system. J. Neurosci. Res. 50, 272–290 ( 1997).

    Article  CAS  Google Scholar 

  15. Strumpf, D. & Volk, T. Kakapo, a novel cytoskeletal-associated protein is essential for the restricted localization of the neuregulin-like factor, vein, at the muscle-tendon junction site. J. Cell Biol. 143, 1259–1270 ( 1998).

    Article  CAS  Google Scholar 

  16. Gregory, S. L. & Brown, N. H. kakapo, a gene required for adhesion between and within cell layers in Drosophila , encodes a large cytoskeletal linker protein related to plectin and dystrophin. J. Cell Biol. 143, 1271– 1282 (1998).

    Article  CAS  Google Scholar 

  17. Lee, S., Harris, K. L., Whitington, P. M. & Kolodziej, P. A. short stop is allelic to kakapo, and encodes rod-like cytoskeletal-associated proteins required for axon extension. J. Neurosci. 20, 1096–1108 (2000).

    Article  CAS  Google Scholar 

  18. Prokop, A., Uhler, J., Roote, J. & Bate, M. The kakapo mutation affects terminal arborization and central dendritic sprouting of Drosophila motorneurons. J. Cell Biol. 143, 1283–1294 (1998).

    Article  CAS  Google Scholar 

  19. Burridge, K. & Connell, L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil. 3, 405–417 (1983).

    Article  CAS  Google Scholar 

  20. Hodgkin, J. Sex, cell death, and the genome of C. elegans. Cell 98, 277–280 (1999).

    Article  CAS  Google Scholar 

  21. McNally, F. J. & Vale, R. D. Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75, 419–429 ( 1993).

    Article  CAS  Google Scholar 

  22. Srayko, M., Buster, D. W., Bazirgan, O. A., McNally, F. J. & Mains, P. E. MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev. 14, 1072–1084 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).

    Article  CAS  Google Scholar 

  24. Barnes, T. M., Kohara, Y., Coulson, A. & Hekimi, S. Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 141, 159–179 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Goffeau, A. et al. Life with 6000 genes. Science 274, 563–567 (1996).

    Article  Google Scholar 

  26. Mewes, H. W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000).

    Article  ADS  CAS  Google Scholar 

  27. Svetlov, V. V. & Cooper, T. G. Review: compilation and characteristics of dedicated transcription factors in Saccharomyces cerevisiae. Yeast 11, 1439– 1484 (1995).

    Article  CAS  Google Scholar 

  28. Hodgkin, J. & Herman, R. K. Changing styles in C. elegans genetics. Trends Genet. 14, 352– 357 (1998).

    Article  CAS  Google Scholar 

  29. Chen, J. J. et al. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. Genomics 51, 313–324 ( 1998).

    Article  CAS  Google Scholar 

  30. Walhout, A. J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).

    Article  ADS  CAS  Google Scholar 

  31. Schuler, G. D. Sequence mapping by electronic PCR. Genome Res. 7, 541–550 (1997).

    Article  CAS  Google Scholar 

  32. Altschul, S. F. et al. Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Fire and L. Timmons for providing protocols, feeding vectors and the HT115(DE3) bacterial strain; and R. Durbin, D. St. Johnston and B. Schumacher for critical reading of the manuscript. A.G.F. was supported by a US Army Breast Cancer Research Fellowship, R.S.K. by a Howard Hughes Medical Institute Predoctoral Fellowship, M.M.-C. by an EC-TMR Network Grant, P.Z. by a Wellcome Trust Studentship, M.S. by a Swiss National Science Foundation fellowship and J.A. by a Wellcome Trust Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Ahringer.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fraser, A., Kamath, R., Zipperlen, P. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000). https://doi.org/10.1038/35042517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35042517

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing