Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variation in the reversibility of evolution

Abstract

How reversible is adaptive evolution1,2,3,4,5,6? Studies of microbes give mixed answers to this question6,7,8,9,10,11. Reverse evolution has been little studied in sexual populations12,13,14, even though the population genetics of sexual populations may be quite different. In the present study, 25 diverged replicated populations of Drosophila melanogaster are returned to a common ancestral environment for 50 generations. Here we show that reverse evolution back to the ancestral state occurs, but is not universal, instead depending on previous evolutionary history and the character studied. Hybrid populations showed no greater tendency to undergo successful reverse evolution, suggesting that insufficient genetic variation was not the factor limiting reverse evolution. Adaptive reverse evolution is a contingent process which occurs with only 50 generations of sexual reproduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Laboratory radiation due to five selection treatments.
Figure 2: Reverse evolution during 50 generations.
Figure 3: Reverse evolutionary rates as a function of differentiation at the start of the study.

Similar content being viewed by others

References

  1. Muller, H. J. Reversibility in evolution considered from the standpoint of genetics. Biol. Rev. 14, 261–280 (1939).

    Article  Google Scholar 

  2. Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, New York, 1953).

    Google Scholar 

  3. Wright, S. Evolution and the Genetics of Populations. Vol 3 Experimental Results and Evolutionary Deductions (Univ. Chicago Press, Chicago, 1977).

    Google Scholar 

  4. Bull, J. J. & Charnov, E. L. On irreversible evolution. Evolution 39, 1149–1155 (1985).

    Article  CAS  Google Scholar 

  5. Gayon, J. Darwinism's Struggle for Survival: Heredity and the Hypothesis of Natural Selection (Cambridge Univ. Press, Cambridge and New York, 1998).

    Google Scholar 

  6. Crill, W. D., Wichman, H. A. & Bull, J. J. Evolutionary reversals during viral adaptation to alternating hosts. Genetics 154, 27–37 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lenski, R. E. Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42, 433–440 (1988).

    PubMed  Google Scholar 

  8. Rainey, P. B. & Travisano, M. Adaptive radiation in a heterogeneous environment. Nature 394, 69–72 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Burch, C. L. & Chao, L. Evolution by small steps and rugged landscapes in the RNA virus φ6. Genetics 151, 921–927 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore, F. B.-G., Rozen, D. E. & Lenski, R. E. Pervasive compensatory adaptation in Escherichia coli. Proc. R. Soc. Lond. B 267, 515–522 (2000).

    Article  CAS  Google Scholar 

  11. Levin, B. L., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in Bacteria. Genetics 154, 985–997 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Clarke, C. A., Mani, G. S. & Wynne, G. Evolution in reverse: clean air and the peppered moth. Biol. J. Linn. Soc. 26, 189–199 (1985).

    Article  Google Scholar 

  13. Service, P. M., Hutchison, E. W. & Rose, M. R. Multiple genetic mechanisms for the evolution of senescence in Drosophila melanogaster. Evolution 42, 708–716 (1988).

    Article  CAS  Google Scholar 

  14. Cook, L. M., Dennis, R. L. & Mani, G. S. Melanic morph frequency in the peppered moth in the Manchester area. Proc. R. Soc. Lond. B 266, 293–297 (1999).

    Article  Google Scholar 

  15. Rose, M. R. Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38, 1004–1010 (1984).

    Article  ADS  Google Scholar 

  16. Graves, J. L., Toolson, E. C., Jeong, C., Vu, L. N. & Rose, M. R. Desiccation, flight, glycogen, and postponed senescence in Drosophila melanogaster. Physiol. Zool. 65, 268–286 (1992).

    Article  CAS  Google Scholar 

  17. Rose, M. R., Vu, L. N., Park, S. U. & Graves, J. L. Selection on stress resistance increased longevity in Drosophila melanogaster. Exp. Gerontol. 27, 241–250 (1992).

    Article  CAS  Google Scholar 

  18. Fleming, J. E., Spicer, G. S., Garrison, R. C. & Rose, M. R. Two-dimensional protein electrophoretic analysis of postponed aging in Drosophila. Genetica 91, 183–198 (1993).

    Article  CAS  Google Scholar 

  19. Tyler, R. H. et al. The effect of superoxide dismutase alleles on aging in Drosophila. Genetica 91, 143–149 (1993).

    Article  CAS  Google Scholar 

  20. Leroi, A. M., Chippindale, A. K. & Rose, M. R. Long-term laboratory evolution of a genetic life-history trade-off in Drosophila melanogaster. 1. The role of genotype-by-environment interaction. Evolution 48, 1244–1257 (1994).

    PubMed  Google Scholar 

  21. Chippindale, A. K., Alipaz, J. A., Chen, H.-W. & Rose, M. R. Experimental evolution of accelerated development in Drosophila. 1. Development speed and larval survival. Evolution 51, 1536–1551 (1997).

    Article  Google Scholar 

  22. Fisher, R. A. The Genetical Theory of Natural Selection (Dover, New York, 1958).

    MATH  Google Scholar 

  23. Reznick, D. N., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).

    Article  ADS  Google Scholar 

  24. Coyne, J. A., Barton, N. H. & Turelli, M. Perspective: a critique of Sewall Wright's shifting balance theory of evolution. Evolution 51, 643–671 (1997).

    Article  Google Scholar 

  25. Losos, J. B., Jackman, T. R., Larson, A., de Queiroz, K. & Rodriguez-Schettino, L. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2117 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Cohan, F. M. & Hoffmann, A. A. Uniform selection as a diversifying force in evolution: evidence from Drosophila. Am. Nat. 134, 613–637 (1989).

    Article  ADS  Google Scholar 

  27. Travisano, M., Mongold, J. A., Bennet, A. F. & Lenski, R. E. Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267, 87–90 (1995).

    Article  ADS  CAS  Google Scholar 

  28. SPSS, I. SigmaPlot 5.0. Programming Guide (SPSS Inc., Chicago, 1998).

    Google Scholar 

  29. Glantz, S. A. & Slinker, B. K. Primer of Applied Regression and Analysis of Variance (McGraw-Hill Health Professions Division, New York, 1990).

    Google Scholar 

  30. Zar, J. H. Biostatistical Analysis (Prentice Hall, Upper Saddle River, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank P. Beldade, A. K. Chippindale, L. D. Mueller, E. Sucena and particularly M. Matos for advice throughout the project and for comments on the manuscript. H.T. was supported by the Gulbenkian Foundation and Program PRAXIS XXI/FCT under the “Programa Gulbenkian de Doutoramento em Biologia e Medicina”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Teotónio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teotónio, H., Rose, M. Variation in the reversibility of evolution. Nature 408, 463–466 (2000). https://doi.org/10.1038/35044070

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044070

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing