Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell division

Not being the wrong size

Key Points

  • The size of an organism is controlled by regulating the growth, division and death rates of cells. Whereas we know much about the mechanisms within a cell that control these parameters, how these pathways are then used to control cell number and size has remained more elusive.

  • Cell growth and division are often tightly coupled. For example, cyclin D mutations are implicated in size regulation in flies, mammals and plants.

  • When cell size is constant, initial tissue size can be controlled by regulating cell number by allowing cells to divide a certain number of times or for a specified amount of time. A counting mechanism in Xenopus laevis uses a fixed amount of a titratable factor within the egg to regulate the number of divisions. Oligodendrocytes use an intrinsic timer to stop division after a fixed time interval.

  • Cell number can be sensed by having cells secrete a factor that they simultaneously sense. Examples of this are found in bacteria, social amoebae and mammals. Both muscle and thyroid tissues, for example, use secreted factors as part of a negative-feedback loop to control growth.

  • Other secreted factors and signal-transduction pathways also regulate growth and cell division. For example, children who lack growth hormone have growth defects, which can be corrected with growth hormone treatments. Studies in mammals, flies and worms suggest a conserved role for the insulin pathway in regulating growth.

  • There are mechanisms that then mediate the breakup of a tissue into subgroups of defined size. For example, in Drosophila, gradients of morphogens specify subregions of the egg. In Dictyostelium, a secreted signal regulating cell–cell adhesion regulates the breakup of a tissue into subgroups.

Abstract

Size regulation is a never-ending problem. Many of us worry that parts of ourselves are too big whereas other parts are too small. How organisms — and their tissues — are programmed to be a specific size, how this size is maintained, and what might cause something to become the wrong size, are key problems in developmental biology. But what are the mechanisms that regulate the size of multicellular structures?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Division of groups into subgroups.

Similar content being viewed by others

References

  1. Haldane, J. B. S. in Possible Worlds and Other Papers 20–28 (Harper & Brothers, New York, 1928).

    Google Scholar 

  2. Colinvaux, P. Why Big Fierce Animals Are Rare. An Ecologist's Perspective (Princeton University Press, Princeton, New Jersey, 1978).

    Google Scholar 

  3. Su, T. T. The regulation of cell growth and proliferation during organogenesis. In Vivo 14, 141–148 ( 2000).

    CAS  PubMed  Google Scholar 

  4. Conlon, I. & Raff, M. Size control in animal development . Cell 96, 235–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Galitski, T., Saldanha, A., Styles, C., Lander, E. & Fink, G. Ploidy regulation of gene expression. Science 285, 251–254 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  6. Fankhauser, G. The effects of changes in chromosome number on amphibian development. Quart. Rev. Biol. 20, 20–78 (1945).

    Article  Google Scholar 

  7. Weigmann, K., Cohen, S. M. & Lehner, C. F. Cell cycle progression, growth, and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124, 3555–3563 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  9. Sulston, J., Schierenberg, E., White, J. & Thomson, J. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100, 64–119 ( 1983).

    Article  CAS  PubMed  Google Scholar 

  10. Newport, J. & Kirschner, M. A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30, 675–686 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Newport, J. & Kirschner, M. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription . Cell 30, 687–696 (1982).References 10 and 11 show that a cell division counter can function by titrating a fixed amount of a compound with DNA for the dividing cells.

    Article  CAS  PubMed  Google Scholar 

  12. Kim, S. K. & Kaiser, D. Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev. 4, 896–905 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S. K. & Kaiser, D. C-factor: Cell–cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 61, 19–26 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  14. Kaplan, H. B. & Plamann, L. A Myxococcus xanthus cell density-sensing system required for multicellular development. FEMS Microbiol. Lett. 139, 89–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Eberhard, A. et al. Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20, 2444–2449 (1981).

    Article  CAS  PubMed  Google Scholar 

  16. Grossman, A. D. & Losick, R. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl Acad. Sci. USA 85, 4369–4373 ( 1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaplan, H. B. Cell–cell interactions that direct fruiting body development in Myxococcus xanthus. Curr. Opin. Genet. Dev. 1, 363–369 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Mehdy, M. C. & Firtel, R. A. A secreted factor and cyclic AMP jointly regulate cell-type–specific gene expression in Dictyostelium discoideum. Mol. Cell. Biol. 5, 705– 713 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yuen, I. S. & Gomer, R. H. Cell density-sensing in Dictyostelium by means of the accumulation rate, diffusion coefficient and activity threshold of a protein secreted by starved cells. J. Theor. Biol. 167, 273–282 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  20. Clarke, M. & Gomer, R. H. PSF and CMF, autocrine factors that regulate gene expression during growth and early development of Dictyostelium . Experientia 51, 1124– 1134 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E. & Brinster, R. L. Metallothionein-human GH fusion genes stimulate growth of mice. Science 222, 809–814 (1983).A major advance in regulating the size of an animal.

    Article  CAS  PubMed  Google Scholar 

  22. Voss, L. D. Growth hormone therapy for the short normal child: who needs it and who wants it? The case against growth hormone therapy. J. Pediatr. 136, 103–106 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Sandberg, D. E. Should short children who are not deficient in growth hormone be treated? West. J. Med. 172, 186– 189 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weinkove, D. & Leevers, S. J. The genetic control of organ growth: insights from Drosophila. Curr. Opin. Genet. Dev. 10, 75–80 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  25. Coelho, C. M. & Leevers, S. J. Do growth and cell division rates determine cell size in multicellular organisms? J. Cell Sci. 113, 2927–2934 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, C., Jack, J. & Garofalo, R. S. The Drosophila insulin receptor is required for normal growth. Endocrinology 137, 846 –856 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Bohni, R. et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Leevers, S. J., Weinkove, D., MacDougall, L. K., Hafen, E. & Waterfield, M. D. The Drosophila phosphoinositide 3-kinase DP110 promotes cell growth. EMBO J. 15, 6584–6594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Montagne, J. et al. Drosophila S6 kinase; a regulator of cell size. Science 285, 2126–2129 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  30. Weinkove, D., Neufeld, T., Twardzik, T., Waterfield, M. & Leevers, S. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class I(A) phosphoinositide 3-kinase and its adapter. Curr. Biol. 9, 1019–1029 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Lin, K., Dorman, J. B., Rodan, A. & Kenyon, C. daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Wolkow, C., Kimura, K., Lee, M. & Ruvkun, G. Regulation of C. elegans life-span by insulin-like signaling in the nervous system. Science 290, 147–150 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  33. Nakayama, K. et al. Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors . Cell 85, 707–720 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Franklin, D. et al. CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 12, 2899– 2911 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kiyokawa, H. et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27kip1. Cell 85, 721–732 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Fero, M. L. et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1-deficient mice . Cell 85, 733–744 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Meyer, C. et al. Drosophila cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBO J. 19, 4533–4542 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Datar, S., Jacobs, H., de La Cruz, A., Lehner, C. & Edgar, B. The Drosophila cyclin D–cdk4 complex promotes cellular growth. EMBO J. 19, 4543–4554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Preisig, P. A cell cycle-dependent mechanism of renal tubule epithelial cell hypertrophy . Kidney Int. 56, 1193– 1198 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Braam, J. & Davis, R. W. Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60, 357–364 ( 1990).

    Article  CAS  PubMed  Google Scholar 

  41. Cockcroft, C. E., den Boer, B. G., Healy, J. M. & Murray, J. A. Cyclin D control of growth rate in plants. Nature 405 , 575–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Micalopoulos, G. K. & DeFrances, M. C. Liver regeneration . Science 276, 60–66 (1997).

    Article  Google Scholar 

  43. Meir, S. Development of the chick embryo mesoblast. Dev. Biol. 73, 25–45 (1979).

    Article  Google Scholar 

  44. Jaing, T.-X., Jung, H.-S., Widelitz, R. B. & Chuong, C.-M. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development 126, 4997–5009 (1999).

    Article  Google Scholar 

  45. Rawls, A., Wilson–Rawls, J. & Olson, E. N. Genetic regulation of somite formation. Curr. Top. Dev. Biol. 47, 131–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Metcalf, D. Restricted growth capacity of multiple spleen grafts. Transplantation 2, 387–392 ( 1964).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, S. & McPherron, A. Myostatin and the control of skeletal muscle mass. Curr. Opin. Genet. Dev. 9, 604–607 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Thomas, M. et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275, 40235–40243 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. McPherron, A. & Lee, S. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl Acad. Sci. USA 94 , 12457–12461 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McPherron, A. C., Lawler, A. M. & Lee, S. -J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).An excellent example of a secreted-factor directly inhibiting the growth of the secreted cells.

    Article  CAS  PubMed  Google Scholar 

  51. De Groot, L. J. in Control of the Thyroid Gland (eds Ekholm, R., Kohn, L. D. & Wollman, S. H.) 5–10 (Plenum, New York, 1989).

    Book  Google Scholar 

  52. Larsen, P. R. in Control of the Thyroid Gland (eds Ekholm, R., Kohn, L. D. & Wollman, S. H.) 11–26 (Plenum, New York, 1989).

    Book  Google Scholar 

  53. Eggo, M. & Burrow, G. N. in Control of the Thyroid Gland (eds Ekholm, R., Kohn, L. D. & Wollman, S. H.) 327– 339 (Plenum, New York, 1989).

    Book  Google Scholar 

  54. Dumont, J. E. et al. in Control of the Thyroid Gland (eds Ekholm, R., Kohn, L. D. & Wollman, S. H.) 357–372 (Plenum, New York, 1989).

    Book  Google Scholar 

  55. Schwartz, M., Woods, S., Porte, D. J., Seeley, R. & Baskin, D. Central nervous system control of food intake. Nature 404, 661–671 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ahima, R. S. Leptin and the neuroendocrinology of fasting. Front. Horm. Res. 26, 42–56 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  57. St. Johnston, D. & Nusslein-Volhard, C. The origin of pattern and polarity in the Drosophila embryo. Cell 68, 201–219 ( 1992).Lucid description of the Drosophila patterning mechanism.

    Article  Google Scholar 

  58. Loomis, W. F. Dictyostelium discoideum: A Developmental System (Academic, New York, 1975).

    Google Scholar 

  59. Loomis, W. F. Development of Dictyostelium discoideum. (Academic, New York, 1982).

    Google Scholar 

  60. Bonner, J. T. & Hoffman, M. E. Evidence for a substance responsible for spacing pattern of aggregation and fruiting bodies in the cellular slime mold. J. Embryol. Exp. Morphol. 11, 571– 589 (1963).

    CAS  PubMed  Google Scholar 

  61. Kopachik, W. J. Size regulation in Dictyostelium. J. Embryol. Exp. Morphol. 68, 23–35 ( 1982).

    CAS  PubMed  Google Scholar 

  62. Brock, D. A. & Gomer, R. H. A cell-counting factor regulating structure size in Dictyostelium. Genes Dev. 13, 1960–1969 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brown, J. M. & Firtel, R. A. Just the right size: Cell counting in Dictyostelium. Trends Genet. 16, 191–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Spann, T. P., Brock, D. A., Lindsey, D. F., Wood, S. A. & Gomer, R. H. Mutagenesis and gene identification in Dictyostelium by shotgun antisense. Proc. Natl Acad. Sci. USA 93, 5003–5007 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brock, D. A. et al. A Dictyostelium mutant with defective aggregate size determination. Development 122, 2569– 2578 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Goodman, C. The likeness of being: phylogenetically conserved molecular mechanisms of growth cone guidance. Cell 78, 353– 356 (1994).

    Article  CAS  PubMed  Google Scholar 

  67. Radice, G. et al. Developmental defects in mouse embryos lacking N-cadherin . Dev. Biol. 181, 64–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Myat, M. & Andrew, D. Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia. Development 127, 679– 691 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Castro, M. I., Vielmetter, E. & Bronner-Fraser, M. N-cadherin, a cell adhesion molecule involved in establishment of embryonic left–right asymmetry. Science 288 , 1047–1051 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kamboj, R. K., Lam, T. Y. & Siu, C. H. Regulation of slug size by the cell adhesion molecule gp80 in Dictyostelium discoideum. Cell Reg. 1, 715–729 (1990).

    Article  CAS  Google Scholar 

  71. Siu, C. H. & Kamboj, R. K. Cell–cell adhesion and morphogenesis in Dictyostelium discoideum. Dev. Genet. 11, 377–387 (1990).

    Article  CAS  PubMed  Google Scholar 

  72. Roisin-Bouffay, C., Jang, W. & Gomer, R. H. A precise group size in Dictyostelium is generated by a cell-counting factor modulating cell–cell adhesion. Mol. Cell 6, 953–959 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  73. Gao, F., Apperly, J. & Raff, M. Cell-intrinsic timers and thyroid hormone regulate the probability of cell-cycle withdrawal and differentiation of oligodendrocyte precursor cells. Dev. Biol. 197, 54– 66 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Kondo, T. & Raff, M. Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127, 2989–2998 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Durand, B. & Raff, M. A cell-intrinsic timer that operates during oligodendrocyte development. BioEssays 22, 64–71 (2000).Elegant description of a timer mechanism regulating how long a group of cells can continue dividing.

    Article  CAS  PubMed  Google Scholar 

  76. Durand, B., Fero, N. L., Roberts, J. M. & Raff, M. C. p27Kip1 alters the response of cells to nitrogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation . Curr. Biol. 8, 431–440 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Raff, M., Lillien, L., Richardson, W., Burnem, J. & Noble, M. Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture . Nature 333, 562–565 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Barres, B., Lazar, M. & Raff, M. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 120, 1097–1108 (1994).

    Article  CAS  PubMed  Google Scholar 

  79. Burton, P. B. J., Raff, M. C., Kerr, P., Yacoub, M. H. & Barton, P. J. R. An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes. Dev. Biol. 216, 659–670 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Calver, A. et al. Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron 20, 869– 882 1998).

    Article  CAS  PubMed  Google Scholar 

  81. Burne, J. F., Staple, J. K. & Raff, M. C. Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons. J. Neurosci. 16, 2064–2073 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Barres, B. A. & Raff, M. C. Axonal control of oligodendrocyte development. J. Cell Biol. 147, 1123– 1128 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bullough, W. S. & Laurence, E. B. Mitotic control by internal secretion: The role of the chalone–adrenalin complex. Exp. Cell Res. 33, 176–194 (1964).

    Article  CAS  PubMed  Google Scholar 

  84. Bullough, W. S. Mitotic and function homeostasis: a speculative review. Cancer Res. 25, 1683–1727 ( 1965).

    CAS  PubMed  Google Scholar 

  85. Boldingh, W. & Laurence, E. Extraction, purification and preliminary characterization of the epidermal chalone: A tissue specific mitotic inhibitor obtained from vertebrate skin. Eur. J. Biochem. 5, 191–198 (1968).

    Article  CAS  PubMed  Google Scholar 

  86. Sassier, P. & Bergeron, M. Specific inhibition of cell proliferation in the mouse intestine by an aqueous extract of rabbit small intestine. Cell Tissue Kinet. 10, 223–231 (1977).

    CAS  PubMed  Google Scholar 

  87. Barfod, N. M. Isolation and partial identification of eight endogenous G1 inhibitors of JB–1 ascites tumor cell proliferation. Cancer Res. 42, 2420–2425 (1982).

    CAS  PubMed  Google Scholar 

  88. Saetren, H. A principle of autoregulation of growth. Production of organ specific mitose-inhibitors in kidney and liver. Exp. Cell Res. 11, 229–232 (1956).

    Article  CAS  PubMed  Google Scholar 

  89. Bullough, W. S., Hewett, C. L. & Laurence, E. B. The epidermal chalone: A preliminary attempt at isolation . Exp. Cell Res. 36, 192– 200 (1964).

    Article  CAS  PubMed  Google Scholar 

  90. Richter, K. et al. Epidermal G1-chalone and transforming growth factor-β are two different endogenous inhibitors of epidermal cell proliferation. J. Cell Physiol. 142, 496–504 (1990).

    Article  CAS  PubMed  Google Scholar 

  91. Hodges, A. Alan Turing: The Enigma (Simon & Schuster, New York, 1983).

    Google Scholar 

  92. Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. (Lond.) 237, 37–72 ( 1952).A tour de force of theoretical biology. Turing's genius, ability to explain things simply, and kind personality are evident in this paper.

    Google Scholar 

  93. Meinhardt, H. Models of Biological Pattern Formation (Academic, London, 1982).

    Google Scholar 

  94. McNally, J. G. & Cox, E. C. Geometry and spatial patterns in Polysphondylium pallidum. Dev. Genet. 9, 663–672 (1988).

    Article  CAS  PubMed  Google Scholar 

  95. Sawai, S., Maeda, Y. & Swada, Y. Spontaneous symmetry breaking Turing-type pattern formation in a confined Dictyostelium cell mass. Phys. Rev. Lett. 85, 2212–2215 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  96. Smith, K. M., Gee, L. & Bode, H. R. HyAlx, an aristaless-related gene, is involved in tentacle formation in hydra. Development 127, 4743–4752 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Gueron, S., Levin, S. A. & Rubenstein, D. I. The dynamics of herds: From individuals to aggregations . J. Theor. Biol. 182, 85– 98 (1996).

    Article  Google Scholar 

  98. Okubo, A. in Advances in Biophysics (eds Kotani, M. & Noda, H.) 1– 87 (Japan Sci. Soc., Tokyo, 1986).

    Google Scholar 

  99. Flierl, G., Grunbaum, D., Levins, S. & Olson, D. From individuals to aggregations: the interplay between behavior and physics. J. Theor. Biol. 196, 397–454 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Bonabeau, E., Dagorn, L. & Freon, P. Scaling in animal group-size distributions. Proc. Natl Acad. Sci. USA 96, 4472– 4477 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fuqua, W. C., Winans, S. C. & Greenberg, E. P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 176, 269–275 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Piper, K. R., von Bodiman, S. B. & Farrand, S. K. Conjugation factor of Agrobacterium tumefaciens regulated Ti plasmid transfer by autoinduction. Nature 362, 448–450 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Kuspa, A., Plamann, L. & Kaiser, D. Identification of heat-stable A-factor from Myxococcus xanthus. J. Bacteriol. 174, 3319– 3326 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Magnuson, T., Solomon, J. & Grossman, A. D. Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77, 207–216 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Jain, R., Yuen, I. S., Taphouse, C. R. & Gomer, R. H. A density-sensing factor controls development in Dictyostelium. Genes Dev. 6, 390–400 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  106. Jain, R. & Gomer, R. H. A developmentally regulated cell surface receptor for a density-sensing factor in Dictyostelium. J. Biol. Chem. 269, 9128–9136 (1994).

    Article  CAS  PubMed  Google Scholar 

  107. Van Haastert, P. J. M., Bishop, J. D. & Gomer, R. H. The cell density factor CMF regulates the chemoattractant receptor cAR1 in Dictyostelium. J. Cell Biol. 134, 1543–1549 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Brazill, D. T., Lindsey, D. F., Bishop, J. D. & Gomer, R. H. Cell density sensing mediated by a G protein-coupled receptor activating phospholipase C. J. Biol. Chem. 273, 8161– 8168 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank K. Beckingham, D. Bell-Pedersen and J. Braam for helpful suggestions, D. Hatton for assistance with the manuscript and figures, and Sheila Herman for preparation of Fig. 1. R.H.G. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

CHICO

PI(3)K

S6 kinase

p27

p18

cdk4

cyclin D

TSH

p27kip1

FURTHER INFORMATION

Raff lab

Leevers lab

Gomer lab

Dictyostelium

C. elegans

Drosophila

Glossary

TRACHEAE

The air tubes that form the respiratory system of an insect.

MIDBLASTULA TRANSITION

Marks the initiation of zygotic gene transcription and the end of the embryo's dependency on maternal mRNA. The mid-blastula transition also marks a lengthening of the cell cycle.

OLIGODENDROCYTE

A supporting cell in the nervous system that forms a myelin sheath around axons.

SOMITE

A group of cells that breaks off from a column of mesoderm cells in a vertebrate embryo; the group then forms a segment of the backbone and associated structures.

MYOBLAST

An embryonic cell that becomes a muscle cell or part of a muscle cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomer, R. Not being the wrong size. Nat Rev Mol Cell Biol 2, 48–55 (2001). https://doi.org/10.1038/35048058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing