Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Breaking the mitochondrial barrier

Abstract

Pro- and anti-apoptotic members of the Bcl-2 family control the permeability of the outer mitochondrial membrane. They could do this either by forming autonomous pores in the membrane or by collaborating with components of the permeability transition pore. Here we discuss why we favour the first of these possibilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation of Bax and Bak by BH3-only proteins.
Figure 2: Two models for permeabilization of the outer mitochondrial membrane.

Similar content being viewed by others

References

  1. Desagher, S. & Martinou, J.-C. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10, 369–377 (2000).

    Article  CAS  Google Scholar 

  2. Nicotera, P. & Leist, M. Energy supply and the shape of death in neurons and lymphoid cells. Cell Death Differ. 4, 435–442 (1997).

    Article  CAS  Google Scholar 

  3. Chautan, M., Chazal, G., Cecconi, F., Gruss, P. & Golstein, P. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9, 967–970 (1999).

    Article  CAS  Google Scholar 

  4. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  Google Scholar 

  5. Verhagen, A. M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    Article  CAS  Google Scholar 

  6. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  Google Scholar 

  7. Hsu, Y.-T., Wolter, K. G. & Youle, R. J. Cytosol-to-membrane redistribution of Bax and Bcl-xL during apoptosis. Proc. Natl Acad. Sci. USA 94, 3668–3672 (1997).

    Article  CAS  Google Scholar 

  8. Suzuki, M., Youle, R. J. & Tjandra, N. Structure of Bax: Coregulation of dimer formation and intracellular localization. Cell 103, 645–654 (2000).

    Article  CAS  Google Scholar 

  9. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2061–2071 (2000).

    Google Scholar 

  10. Perez, D. & White, E. TNF-α signals apoptosis through a Bid-dependent conformational change in Bax that is inhibited by E1B19K. Mol. Cell 6, 53–63 (2000).

    Article  CAS  Google Scholar 

  11. Puthalakath, H., Huang, D. C. S., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  CAS  Google Scholar 

  12. Goldstein, J. C., Waterhouse, N. J., Juin, P., Evan, G. I. & Green, D. R. The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nature Cell Biol. 2, 156–162 (2000).

    Article  CAS  Google Scholar 

  13. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  CAS  Google Scholar 

  14. Chou, J. J., Honglin, L., Salvesen, G. S., Yuan, J. & Wagner, G. Solution structure of Bid, an intracellular amplifier of apoptotic signaling. Cell 96, 615–624 (1999).

    Article  CAS  Google Scholar 

  15. McDonnell, J. M., Fushman, D., Milliman, C. L., Korsmeyer, S. J. & Cowburn, D. Solution structure of the proapoptotic molecule Bid: a structural basis for apoptotic agonists and antagonists. Cell 96, 625–634 (1999).

    Article  CAS  Google Scholar 

  16. Shimizu, S. & Tsujimoto, Y. Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc. Natl Acad. Sci. USA 97, 577–582 (2000).

    Article  CAS  Google Scholar 

  17. von Ahsen, O. et al. Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J. Cell Biol. 150, 1027–1036 (2000).

    Article  CAS  Google Scholar 

  18. Chai, J. C. et al. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855–862 (2000).

    Article  CAS  Google Scholar 

  19. Antonsson, B., Montessuit, S., Lauper, S., Eskes, R. & Martinou, J.-C. Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem. J. 345, 271–278 (2000).

    Article  CAS  Google Scholar 

  20. Gross, A., Jockel, J., Wei, M. C. & Korsmeyer, S. J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878–3885 (1998).

    Article  CAS  Google Scholar 

  21. Cheng, E. H.-Y. et al. Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966–1968 (1997).

    Article  CAS  Google Scholar 

  22. Saito, M., Korsmeyer, S. J. & Schlesinger, P. H. Bax-dependent transport of cytochrome c reconstitued in pure liposomes. Nature Cell Biol. 2, 553–555 (2000).

    Article  CAS  Google Scholar 

  23. Gilbert, R. J. C. et al. Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97, 647–655 (1999).

    Article  CAS  Google Scholar 

  24. Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V. & Di Lisa, F. Mitochondria and cell death. Eur. J. Biochem. 264, 687–701 (1999).

    Article  CAS  Google Scholar 

  25. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).

    Article  CAS  Google Scholar 

  26. Eskes, R., Desagher, S., Antonsson, B. & Martinou, J.-C. Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935 (2000).

    Article  CAS  Google Scholar 

  27. Marzo, I. et al. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027–2031 (1998).

    Article  CAS  Google Scholar 

  28. Shimizu, S., Narita, M. & Tsujimoto, Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487 (1999).

    Article  CAS  Google Scholar 

  29. Shimizu, S., Ide, T., Yanagida, T. & Tsujimoto, Y. Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J. Biol. Chem. 275, 12321–12325 (2000).

    Article  CAS  Google Scholar 

  30. Shimizu, S., Konishi, A., Kodoma, T. & Tsujimoto, Y. BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc. Natl Acad. Sci. USA 97, 3100–3105 (2000).

    Article  CAS  Google Scholar 

  31. Vander Heiden, M. G., Chandel, N. S., Schumacker, P. T. & Thompson, C. B. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    Article  CAS  Google Scholar 

  32. Vander Heiden, M. G. et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA 97, 4666–4671 (2000).

    Article  CAS  Google Scholar 

  33. Zhuang, J., Dinsdale, D. & Cohen, G. M. Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities and reduction in inner membrane potential. Cell Death Differ. 5, 953–962 (1998).

    Article  CAS  Google Scholar 

  34. Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642 (1998).

    Article  CAS  Google Scholar 

  35. Gross, A. et al. Biochemical and genetic analysis of the mitochondrial response of yeast to Bax and Bcl-xL . Mol. Cell. Biol. 20, 3125–3136 (2000).

    Article  CAS  Google Scholar 

  36. Priault, M., Chaudhuri, B., Clow, A., Camougrand, N. & Manon, S. Investigation of Bax-induced release of cytochrome c from yeast mitochondria. Eur. J. Biochem. 260, 684–691 (1999).

    Article  CAS  Google Scholar 

  37. Kissova, I. et al. The cytotoxic action of Bax on yeast cells does not require mitochondrial ADP/ATP carrier but may be related to its import to the mitochondria. FEBS Lett. 471, 113–118 (2000).

    Article  CAS  Google Scholar 

  38. Priault, M., Camougrand, N., Chaudhuri, B., Schaeffer, J. & Manon, S. Comparison of the effects of Bax-expression in yeast under fermentative and respiratory conditions: investigation of the role of adenine nucleotides carrier and cytochrome c. FEBS Lett. 456, 232–238 (1999).

    Article  CAS  Google Scholar 

  39. Pastorino, J. G., Chen, S.-T., Tafani, M., Snyder, J. W. & Farber, J. L. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770–7775 (1998).

    Article  CAS  Google Scholar 

  40. Bossy-Wetzel, E., Newmeyer, D. D. & Green, D. R. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17, 37–49 (1998).

    Article  CAS  Google Scholar 

  41. Zhivotovsky, B., Orrenius, S., Brustugun, O. T. & Doskeland, S. O. Injected cytochrome c induces apoptosis. Nature 391, 449–450 (1998).

    Article  CAS  Google Scholar 

  42. Deshmukh, M. & Johnson, E. M. Evidence of a novel event during neuronal death: development of competence-to-die in response to cytoplasmic cytochrome c. Neuron 21, 653–655 (1998).

    Article  Google Scholar 

  43. Green, D. Apoptotic pathways: papers wraps stone blunts scissors. Cell 102, 1–4 (2000).

    Article  CAS  Google Scholar 

  44. Desagher, S. et al. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 (1999).

    Article  CAS  Google Scholar 

  45. Knudson, C. M. & Korsmeyer, S. J. Bcl-2 and Bax function independently to regulate cell death. Nature Genet. 16, 358–363 (1997).

    Article  CAS  Google Scholar 

  46. Kane, D. J., Ord, T., Anton, R. & Bredesen, D. E. Expression of Bcl-2 inhibits necrotic neuronal cell death. J. Neurosci. Res. 40, 269–275 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Antonsson, S. Desagher, M. Koco–Vilbois, K. Maundrell, S. Montessuit, O. Terradillos and X. Roucou for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

Apaf-1

Smac

AIF

Bcl-2

Bcl-xL

Bax

Bak

Bid

Bad

Bim

cyclophilin D

Bok

ENCYCLOPEDIA OF LIFE SCIENCES

Apoptosis: molecular mechanisms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinou, JC., Green, D. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2, 63–67 (2001). https://doi.org/10.1038/35048069

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing