Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Nature
  • Published:

Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana

Abstract

Arabidopsis thaliana is an important model system for plant biologists1. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis2 and in 1999 the sequence of the first two chromosomes was reported3,4. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue5,6,7. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere8. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D. & Koornneef, M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662, 679– 682 (1998).

    Article  Google Scholar 

  2. Bevan, M. et al. Objective: the complete sequence of a plant genome. Plant Cell 9, 476–478 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mayer, K. et al. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402, 769– 777 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761– 768 (1999).

    ADS  CAS  PubMed  Google Scholar 

  5. Theologis, A. et al. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. Nature 408, 816– 820 (2000).

    Article  ADS  PubMed  Google Scholar 

  6. Tabata, S. et al. Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. Nature 408, 823– 826 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature 408, 796–815 (2000).

    Article  ADS  Google Scholar 

  8. Copenhaver, G. P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468– 2474 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Camilleri, C. et al. A YAC contig map of Arabidopsis thaliana chromosome 3. Plant J. 14, 633–642 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Sato, S. et al. A physical map of Arabidopsis thaliana chromosome 3 represented by two contigs of CIC YAC, P1, TAC and BAC clones. DNA Res. 5, 163–168 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Choi, S., Creelman, R. A., Mullet, J. E. & Wing, R. A. Construction and characterization of bacterial artificial chromosome library of Arabidopsis thaliana. Plant Mol. Biol. Rep. 13, 124–128 (1995).

    Article  Google Scholar 

  12. Mozo, T., Fischer, S., Shizuya, H. & Altmann, T. Construction and characterization of the IGF Arabidopsis BAC library. Mol. Gen. Genet. 258, 562–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, Y. G., Mitsukawa, N., Vasquez-Tello, A. & Whittier, R. F. Generation of high-quality P1 library of Arabidopsis suitable for chromosome walking. Plant J. 7, 351– 358 (1995).

    Article  CAS  Google Scholar 

  14. Liu, Y. G. et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proc. Natl Acad. Sci. USA 96, 6535 –6540 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Richards, E. J. & Ausubel, F. M. Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53, 127–136 ( 1988).

    Article  CAS  PubMed  Google Scholar 

  16. Martinez, M., Estelles, A. & Somerville, C. A highly repeated DNA sequence in Arabidopsis thaliana . Mol. Gen. Genet. 204, 417– 423 (1986).

    Article  Google Scholar 

  17. Round, E. K., Flowers, S. K. & Richards, E. J. Arabidopsis thaliana centromere regions: genetic map positions and repetitive DNA structure. Genome Res. 7, 1045–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Fransz, P. et al. Cytogenetics for the model system Arabidopsis thaliana . Plant J. 13, 867– 876 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Lopato, S. et al. atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes. Genes Dev. 13, 987–1001 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lazar, G. & Goodman, H. M. The Arabidopsis splicing factor SR1 is regulated by alternative splicing. Plant Mol. Biol. 42, 571–581 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  21. Sablowski, R. W. & Meyerowitz, E. M. Temperature-sensitive splicing in the floral homeotic mutant apetala3–1. Plant Cell 10, 1453–1463 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mironov, A. A., Fickett, J. W. & Gelfand, M. S. Frequent alternative splicing of human genes. Genome Res. 9, 1288–1293 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Apweiler, M. et al. InterPro. CCP11 Newsletter 10(2000) 〈http://www.hgmp.mrc.ac.uk/CCP11/newsletter/vol3_4〉.

  24. Schouten, J., de Kam, R. J., Fetter, K. & Hoge, J. H. Overexpression of Arabidopsis thaliana SKP1 homologues in yeast inactivates the Mig1 repressor by destabilising the F-box protein Grr1. Mol. Gen. Genet. 263, 309–319 (2000).

    CAS  PubMed  Google Scholar 

  25. Alexiadis, V. et al. The protein encoded by the proto-oncogene DEK changes the topology of chromatin and reduces the efficiency of DNA replication in a chromatin-specific manner. Genes Dev. 14, 1308– 1312 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dangel, A. W., Shen, L., Mendoza, A. R., Wu, L. C. & Yu, C. Y. Human helicase gene SKI2W in the HLA class III region exhibits striking structural similarities to the yeast antiviral gene SKI2 and to the human gene KIAA0052: emergence of a new gene family. Nucleic Acids Res. 23, 2120–2126 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sato, S. et al. A sequence-ready contig map of the top arm of Arabidopsis thaliana chromosome 3. DNA Res. 6, 117 –121 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Sato, S. et al. Structural analysis of Arabidopsis thaliana chromosome 3. I. Sequence features of the regions of 4,504,864 bp covered by sixty P1 and TAC clones. DNA Res. 7, 131– 135 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195– 197 (1981).

    Article  CAS  PubMed  Google Scholar 

  30. Glemet, E. & Codani, J. J. LASSAP, a LArge Scale Sequence compArison Package. Comput. Appl. Biosci. 13, 137–143 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a contract from the European Commission, by The Kazusa DNA Research Institute Foundation, and by the National Science Foundation, the US Department of Energy and the US Department of Agriculture. We thank G. Copenhaver for his contribution to completing the chromosome; M. Marra and M. Sekhon for mapping data; J. Hazan, H. Roest Crollius and M. Katinka for discussions; and system administrators, sequencing facility, bioinformatics department and administrative staff from TIGR, Genoscope and Kazusa Institute.

Author information

Authors and Affiliations

Consortia

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

European Union Chromosome 3 Arabidopsis Genome Sequencing Consortium., The Institute for Genomic Research. & Kazusa DNA Research Institute. Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana . Nature 408, 820–823 (2000). https://doi.org/10.1038/35048706

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35048706

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing