Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation

Abstract

DAP kinase is a pro-apoptotic calcium-regulated serine/threonine kinase, whose expression is frequently lost in human tumours. Here we show that DAP kinase counteracts oncogene-induced transformation by activating a p19ARF/p53-dependent apoptotic checkpoint. Ectopic expression of DAP kinase suppressed oncogenic transformation of primary embryonic fibroblasts by activating p53 in a p19ARF-dependent manner. Consequently, the fibroblasts underwent apoptosis, characterized by caspase activation and DNA fragmentation. In response to c-Myc or E2F-1, the endogenous DAP kinase protein was upregulated. Furthermore, functional or genetic inactivation of the endogenous DAP kinase reduced the extent of induction of p19ARF/p53 and weakened the subsequent apoptotic responses to c-Myc or E2F-1. These results establish a role for DAP kinase in an early apoptotic checkpoint designed to eliminate pre-malignant cells during cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suppression of transformation by DAP kinase in primary rodent fibroblasts.
Figure 2: Activation of p53 by DAP kinase.
Figure 3: DAP kinase induces p19ARF/p53-dependent apoptosis.
Figure 4: DAP-kinase-induced apoptosis requires the catalytic activity of the kinase, and involves caspase activation.
Figure 5: Inactivation of DAP kinase by a dominant-negative mutant reduces induction of p53 and apoptotic responses to c-Myc.
Figure 6: DAP-kinase-deficient MEFs display reduced extent of p53 induction by c-Myc or E2F-1.
Figure 7: E2F-1-induced apoptosis is attenuated in the absence of DAP kinase.

Similar content being viewed by others

References

  1. Deiss, L. P. & Kimchi, A. A genetic tool used to identify thioredoxin as a mediator of a growth inhibitory signal. Science 252, 117–120 ( 1991).

    Article  CAS  Google Scholar 

  2. Deiss, L. P., Feinstein, E., Berissi, H., Cohen, O. & Kimchi, A. Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev. 9, 15– 30 (1995).

    Article  CAS  Google Scholar 

  3. Cohen, O., Feinstein, E. & Kimchi, A. DAP kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J. 16, 998– 1008 (1997).

    Article  CAS  Google Scholar 

  4. Cohen, O. et al. DAP kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. J. Cell Biol. 146, 141–148 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Inbal, B. et al. DAP kinase links the control of apoptosis to metastasis. Nature 390, 180–184 ( 1997).

    Article  CAS  Google Scholar 

  6. Feinstein, E., Wallach, D., Boldin, M., Varfolomeev, E. & Kimchi, A. The death domain: a module shared by proteins with diverse cellular functions. Trends Biochem. Sci. 20, 342–344 ( 1995).

    Article  CAS  Google Scholar 

  7. Raveh, T., Berissi, H., Eisenstein, M., Spivak, T. & Kimchi, A. A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc. Natl Acad. Sci. USA 97, 1572–1577 (2000).

    Article  CAS  Google Scholar 

  8. Kissil, J. L. et al. DAP kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene . Oncogene 15, 403–407 (1997).

    Article  CAS  Google Scholar 

  9. Katzenellenbogen, R. A., Baylin, S. B. & Herman, J. G. Hypermethylation of the DAP kinase CpG island is a common alteration in B-cell malignancies. Blood 93, 4347–4353 (1999).

    CAS  PubMed  Google Scholar 

  10. Esteller, M. et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 59, 67–70 ( 1999).

    CAS  PubMed  Google Scholar 

  11. Sanchez-Cespedes, M. et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res. 60, 892–895 (2000).

    CAS  PubMed  Google Scholar 

  12. Manfredi, J. J. & Prives, C. The transforming activity of simian virus 40 large tumor antigen. Biochim. Biophys. Acta 1198, 65–83 ( 1994).

    CAS  PubMed  Google Scholar 

  13. Bryan, T. M. & Reddel, R. R. SV40-induced immortalization of human cells. Crit. Rev. Oncol. 5, 331 –357 (1994).

    Article  CAS  Google Scholar 

  14. Nevins, J. R. Cell cycle targets of the DNA tumor viruses. Curr. Opin. Genet. Dev. 4, 130–134 ( 1994).

    Article  CAS  Google Scholar 

  15. Pipas, J. M., Peden, K. W. & Nathans, D. Mutational analysis of simian virus 40 T antigen: isolation and characterization of mutants with deletions in the T-antigen gene. Mol. Cell. Biol. 2, 203–213 (1983).

    Article  Google Scholar 

  16. Michalovitz, D., Halevy, O. & Oren, M. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62, 671–680 (1990).

    Article  CAS  Google Scholar 

  17. Shaulian, E., Zauberman, A., Ginsberg, D. & Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12, 5581–5592 ( 1992).

    Article  CAS  Google Scholar 

  18. Pietenpol, J. A. et al. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl Acad. Sci. USA 91, 1998–2002 (1994).

    Article  CAS  Google Scholar 

  19. Crook, T., Marston, N. J., Sara, E. A. & Vousden, K. H. Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79, 817– 827 (1994).

    Article  CAS  Google Scholar 

  20. Harvey, D. M. & Levine, A. J. p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. Genes Dev. 12B, 2375 –2385 (1991).

    Article  Google Scholar 

  21. Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).

    Article  CAS  Google Scholar 

  22. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway . Curr. Opin. Genet. Dev. 10, 94– 99 (2000).

    Article  CAS  Google Scholar 

  23. Gottlieb, T. M. & Oren, M. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287, 77–102 (1996).

    PubMed  Google Scholar 

  24. Ko, L. J. & Prives, C. p53: puzzle and paradigm . Genes Dev 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  25. Quelle, D. E., Zindy, F., Ashmun, R. A. & Sherr, C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  Google Scholar 

  26. Sherr, C. J. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  Google Scholar 

  27. Lowe, S. W. Activation of p53 by oncogenes. Endocr. Relat. Cancer 6, 45–48 (1999).

    Article  CAS  Google Scholar 

  28. Pomerantz, J. et al. The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92, 713–723 ( 1998).

    Article  CAS  Google Scholar 

  29. Zindy, F. et al. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12, 2424–2433 (1998).

    Article  CAS  Google Scholar 

  30. de Stanchina, E. et al. E1A signaling to p53 involves the p19(ARF) tumor suppressor . Genes Dev. 12, 2434–2442 (1998).

    Article  CAS  Google Scholar 

  31. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 ( 1998).

    Article  CAS  Google Scholar 

  32. Hermeking, H. & Eick, D. Mediation of c-Myc-induced apoptosis by p53. Science 265, 2091– 2093 (1994).

    Article  CAS  Google Scholar 

  33. Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R. & Lowe, S. W. INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes Dev. 13, 2670– 2677 (1999).

    Article  CAS  Google Scholar 

  34. Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J. & Cleveland, J. L. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13, 2658–2669 (1999).

    Article  CAS  Google Scholar 

  35. Finlay, C. Rat embryo fibroblast complementation assay with ras genes. Methods Enzymol. 255, 389–394 ( 1995).

    Article  CAS  Google Scholar 

  36. Jiang, W. & Hunter, T. Analysis of cell-cycle profiles in transfected cells using amembrane-targeted GFP. Biotechniques 24, 352–354 ( 1998).

    Article  Google Scholar 

  37. Pear, W. S., Nolan, G. P., Scott, M. L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection . Proc. Natl Acad. Sci. USA 90, 8392– 8396 (1993).

    Article  CAS  Google Scholar 

  38. Takahashi, M. et al. Long-term correction of bilirubin-UDP-glucuronosyltransferase deficiency in Gunn rats by administration of a recombinant adenovirus during the neonatal period. J. Biol. Chem. 271, 26536–26542 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Moshe Oren for helpful discussions and reagents. We thank Charles Sherr for the gift of p19ARF−/− MEFs, Claudio Schneider for kindly providing the anti-p21 antibodies, Tony Hunter for the membrane-targeted GFP plasmid, Doron Ginsberg for the E2F-1 plasmid, and members of the Kimchi lab for critical reading of the manuscript. This work was supported by the Israel Foundation, which is administered by the Israel Academy of Science and Humanities, and by QBI Ltd. M.S.H. is supported by the Forchheimer Foundation. R.A.D is an American Cancer Society Research Professor and is supported by grants from the National Institutes of Health. A.K. is the incumbent of the Helena Rubinstein Chair of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adi Kimchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raveh, T., Droguett, G., Horwitz, M. et al. DAP kinase activates a p19ARF/p53-mediated apoptotic checkpoint to suppress oncogenic transformation. Nat Cell Biol 3, 1–7 (2001). https://doi.org/10.1038/35050500

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing