Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage

Abstract

Asymmetric partitioning of cell-fate determinants during development requires coordinating the positioning of these determinants with orientation of the mitotic spindle. In the Drosophila peripheral nervous system, sensory organ progenitor cells (SOPs) undergo several rounds of division to produce five cells that give rise to a complete sensory organ. Here we have observed the asymmetric divisions that give rise to these cells in the developing pupae using green fluorescent protein fusion proteins. We find that spindle orientation and determinant localization are tightly coordinated at each division. Furthermore, we find that two types of asymmetric divisions exist within the sensory organ precursor cell lineage: the anterior–posterior pI cell-type division, where the spindle remains symmetric throughout mitosis, and the strikingly neuroblast-like apical–basal division of the pIIb cell, where the spindle exhibits a strong asymmetry at anaphase. In both these divisions, the spindle reorientates to position itself perpendicular to the region of the cortex containing the determinant. On the basis of these observations, we propose that two distinct mechanisms for controlling asymmetric cell divisions occur within the same lineage in the developing peripheral nervous system in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sensory organ precursor lineage and the external sensory organ.
Figure 2: Numb–GFP is asymmetrically localized in the pI and pIIb cell divisions in the SOP lineage.
Figure 3: Spindles reorientate during mitosis in the SOP lineage.
Figure 4: Initiation of the Pon–GFP crescent localization precedes spindle positioning in the pI SOP division.
Figure 5: frizzled mutants show randomization of positioning of the Pon–GFP crescent.
Figure 6: Both Miranda and Inscuteable are expressed in the pIIb cell, and Inscuteable is required for the proper apical–basal positioning of the mitotic spindle.
Figure 7: The divisions of the sensory organ precursor cell lineage.

Similar content being viewed by others

References

  1. Horvitz, H. & Herskowitz, I. Mechanisms of asymmetric cell division: two B's or not two B's, that is the question. Cell 68, 237–255 ( 1992).

    Article  CAS  Google Scholar 

  2. Jan, Y. & Jan, L. Polarity in cell division: what frames thy fearful asymmetry. Cell 100, 599– 602 (2000).

    Article  CAS  Google Scholar 

  3. Takizawa, P., Sil, A., Swedlow, J., Herskowitz, I. & Vale, R. Actin-dependent localization of an RNA encoding a cell fate determinant in yeast. Nature 389 , 90–93 (1997).

    Article  CAS  Google Scholar 

  4. Long, R. et al. Mating type switching in yeast controlled by asymmetric localization of Ash1 mRNA. Science 277, 383– 387 (1997).

    Article  CAS  Google Scholar 

  5. Lee, L. et al. Positioning of the mitotic spindle by a cortical-microtubule capture mechanism. Science 287, 2260– 2262 (2000).

    Article  CAS  Google Scholar 

  6. Carminati, J. & Stearns, T. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J. Cell Biol. 138, 629– 641 (1997).

    Article  CAS  Google Scholar 

  7. Shaw, S., Yeh, E., Maddox, P., Salmon, E. & Bloom, K. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J. Cell Biol. 139, 985–994 (1997).

    Article  CAS  Google Scholar 

  8. Stearns, T. Motoring to the finish: kinesin and dynein work together to orient the yeast mitotic spindle. J. Cell Biol. 138, 957– 960 (1997).

    Article  CAS  Google Scholar 

  9. Korinek, W., Copeland, M., Chaudhuri, A. & Chant, J. Molecular linkage underlying microtubule orientation toward cortical sites in yeast. Science 287, 2257– 2259 (2000).

    Article  CAS  Google Scholar 

  10. Hyman, A. & White, J. Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans. J. Cell Biol. 105, 2123–2135 (1987).

    Article  CAS  Google Scholar 

  11. Rose, L. & Kemphues, K. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32, 521–545 (1998).

    Article  CAS  Google Scholar 

  12. Gho, M., Bellaiche, Y. & Schweisguth, F. Revisiting the Drosophila microchaete lineage: a novel intrinsically asymmetric cell division generates a glial cell. Development 126, 3573–3584 (1999).

    CAS  PubMed  Google Scholar 

  13. Kaltschmidt, J., Davidson, C., Brown, N. & Brand, A. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat ure Cell Biol. 2, 7–12 (2000).

    Article  CAS  Google Scholar 

  14. Lu, B., Ackerman, L., Jan, L. & Jan, Y. Modes of protein movement that lead to the asymmetric localization of Partner of Numb during Drosophila neuroblast division. Mol. Cell 4, 883–891 (1999).

    Article  CAS  Google Scholar 

  15. Bate, M. in Handbook of Sensory Physiology Vol. IX (ed. Jakobson, M.) 1–53 (Springer, Berlin, 1978).

    Google Scholar 

  16. Gomez, M. & Bate, M. Segregation of myogenic lineages in Drosophila requires numb. Development 124, 4857–4866 ( 1997).

    CAS  Google Scholar 

  17. Buescher, M. et al. Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable -mediated asymmetry of ganglion mother cells. Genes Dev. 12, 1858–1870 (1998).

    Article  CAS  Google Scholar 

  18. Kraut, R., Chia, W., Jan, L., Jan, Y. & Knoblich, J. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    Article  CAS  Google Scholar 

  19. Carmena, A., Murugasu-Oei, B., Menon, D., Jimenez, F. & Chia, W. inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes & Dev. 12, 304 –315 (1998).

    Article  CAS  Google Scholar 

  20. Knoblich, J., Jan, L. & Jan, Y. Asymmetric segregation of Numb and Prospero during cell division. Nature 377, 624–630 ( 1995).

    Article  CAS  Google Scholar 

  21. Spana, E., Kopczynski, C., Goodman, C. & Doe, C. Asymmetric localization of Numb autonomously determines sibling neuron identity in Drosophila CNS. Development 121, 3489–3494 (1995).

    CAS  PubMed  Google Scholar 

  22. Rhyu, M., Jan, L. & Jan, Y. Asymmetric distribution of Numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  Google Scholar 

  23. Gho, M. & Schweisguth, F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila . Nature 393, 178–181 (1998).

    Article  CAS  Google Scholar 

  24. Lu, B., Usui, T., Uemura, T., Jan, L. & Jan, Y. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 9, 1247–1250 (1999).

    Article  CAS  Google Scholar 

  25. Schober, M., Schaefer, M. & Knoblich, J. Bazooka recruits Inscuteable to orient asymmetric cell divisions in Drosophila neuroblasts. Nature 402, 548–551 (1999).

    Article  CAS  Google Scholar 

  26. Kraut, R. & Campos-Ortega, J. inscuteable , a neural precursor gene of Drosophila, encodes a candidate for a cytoskeleton adaptor protein. Dev. Biol. 174, 65–81 (1996).

    Article  CAS  Google Scholar 

  27. Kuchinke, U., Grawe, F. & Knust, E. Control of spindle orientation in Drosophila by the Par-3-related PDZ-domain protein Bazooka. Curr. Biol. 8, 1357–1365 ( 1998).

    Article  CAS  Google Scholar 

  28. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in Inscuteable apical localization. Cell 100, 399– 409 (2000).

    Article  CAS  Google Scholar 

  29. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544– 547 (1999).

    Article  CAS  Google Scholar 

  30. Bonnaccorsi, S., Giansanti, M. & Gatti, M. Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biol. 2, 54–56 (2000).

    Article  Google Scholar 

  31. Lu, B., Rothenberg, M., Jan, L. & Jan, Y. Partner of Numb colocalizes with Numb during mitosis and directs Numb asymmetric localization in Drosophila neural and muscle progenitors. Cell 95, 225–235 (1998).

    Article  CAS  Google Scholar 

  32. Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  33. Chiba, A. Personal communication to Flybase. http://flybase.bio.indiana.edu/.bin/fbpcq.html?FBrf0102855 (1998).

  34. Brand, A. GFP in Drosophila. Trends Genet. 11, 324–325 (1995).

    Article  CAS  Google Scholar 

  35. Edwards, K., Demsky, M., Montague, R., Weymouth, N. & Kiehart, D. GFP–Moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).

    Article  CAS  Google Scholar 

  36. Li, P., Yang, X., Wasser, M., Cai, Y. & Chia, W. Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell 90, 437– 447 (1997).

    Article  CAS  Google Scholar 

  37. Hassan, B. et al. skittles, a Drosophila phosphatidylinositol 4-phosphate 5-kinase, is required for cell viability, germline development and bristle morphology, but not for neurotransmitter release. Genetics 150, 1527–1537 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ramírez-Weber, F. & Kornberg, T. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97, 599– 607 (1999).

    Article  Google Scholar 

  39. Schuldt, A. et al. Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes & Dev. 12, 1847–1857 (1998).

    Article  CAS  Google Scholar 

  40. Shen, C.-P., Jan, L. & Jan, Y. Miranda is required for the asymmetric localization of prospero during mitosis in Drosophila. Cell 90, 449– 458 (1997).

    Article  CAS  Google Scholar 

  41. Shen, C.-P. et al. Miranda as a multidomain adapter linking apically localized Inscuteable and basally localized Staufen and Prospero during asymmetric cell division in Drosophila. Genes Dev. 12, 1837–1846 (1998).

    Article  CAS  Google Scholar 

  42. Fuerstenberg, S., Peng, C., Alvarez-Ortiz, P., Hor, T. & Doe, C. Identification of Miranda protein domains regulating asymmetric cortical localization, cargo binding, and cortical release. Mol. Cell. Neurosci. 12, 325–339 (1998).

    Article  CAS  Google Scholar 

  43. Reddy, G. & Rodrigues, V. Sibling cell fate in the Drosophila adult external sense organ lineage is specified by Prospero function, which is regulated by Numb and Notch. Development 126, 2083–2092 ( 1999).

    CAS  PubMed  Google Scholar 

  44. Manning, L. & Doe, C. Prospero distinguishes sibling cell fate without asymmetric localization in the Drosophila adult external sense organ lineage. Development 126 , 2063–2071 (1999).

    CAS  PubMed  Google Scholar 

  45. Hyman, A. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position. J. Cell Biol. 109, 1185–1193 ( 1989).

    Article  CAS  Google Scholar 

  46. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neural morphogenesis. Neuron 22, 451–461 ( 1999).

    Article  CAS  Google Scholar 

  47. Lutz, D. & Inoue, S. Techniques for observing living gametes and embryos. Methods Cell Biol. 27, 89–110 (1986).

    Article  CAS  Google Scholar 

  48. Wang, S., Younger-Shepherd, S., Jan, L. & Jan, Y. Only a subset of the binary cell fate decisions mediated by Numb/Notch signaling in Drosophila sensory organ lineage requires Supressor of Hairless . Development 124, 4435– 4464 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y. M. Chan for critical reading of the manuscript, B. Lu for Sca–Gal4 UAS–Pon–GFP/Cyo and UAS–Numb–GFP flies. We thank F. Schweisguth, D. Kiehart, W. Chia and the Bloomington Stock Center for flies and reagents. We also thank members of the Jan lab for helpful discussions. F.R. is supported by the NIH Neuroscience Training Grant and the Human Frontiers Science Program (HFSP) postdoctoral fellowship. L.Y.J. and Y.N.J. are investigators at the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuh Nung Jan.

Supplementary information

Movie 1a

(See Fig. 4a) Dorsal view of pupa 16^h after formation. The spindle seesaws while the Pon crescent accumulates at the anterior cortex during SOP cell mitosis. When the Pon crescent completes its accumulation the spindle stops moving and undergoes anaphase. Microtubules were labelled with tau-GFP, Pon with Pon-GFP. Frames were recorded every 40^s. Anterior is to the bottom right. (AVI 1504 kb)

Movie 2b (See Fig. 5d)

Dorsal view of pupa ~16^h after formation. The spindle seesaws while the Pon crescent accumulates at the anterior cortex during SOP cell mitosis in an fz mutant. When the Pon crescent completes its accumulation the spindle stops moving and undergoes anaphase. Microtubules were labelled with tau-GFP, Pon with Pon-GFP. Frames were recorded every 15^s. Anterior is to the bottom right. (AVI 823 kb)

Movie 2b (See Fig. 5d)

As Movie 2a. (AVI 823 kb)

Movie 3a

(See Fig. 5e) Dorsal view of pupa ~16^h after formation. In 10% of fz-mutant SOPs the mitotic spindle remains parallel to the Pon-GFP crescent (SOP lower right). In 90% of cases the spindle is orientated perpendicular to the Pon crescent (SOP upper left). At anaphase, in both cases, the Pon-GFP crescent segregates to one of the two daughter cells. Microtubules were labeled with tau-GFP, Pon with Pon-GFP. Frames were recorded every 15^s. Anterior is to the upper right. (AVI 3269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roegiers, F., Younger-Shepherd, S., Jan, L. et al. Two types of asymmetric divisions in the Drosophila sensory organ precursor cell lineage. Nat Cell Biol 3, 58–67 (2001). https://doi.org/10.1038/35050568

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing