Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex

Abstract

The Wiskott–Aldrich-syndrome protein (WASP) regulates polymerization of actin by the Arp2/3 complex. Here we show, using fluorescence anisotropy assays, that the carboxy-terminal WA domain of WASP binds to a single actin monomer with a Kd of 0.6 μM in an equilibrium with rapid exchange rates. Both WH-2 and CA sequences contribute to actin binding. A favourable ΔH of −10 kcal mol−1 drives binding. The WA domain binds to the Arp2/3 complex with a Kd of 0.9 μM; both the C and A sequences contribute to binding to the Arp2/3 complex. Wiskott–Aldrich-syndrome mutations in the WA domain that alter nucleation by the Arp2/3 complex over a tenfold range without affecting affinity for actin or the Arp2/3 complex indicate that there may be an activation step in the nucleation pathway. Actin filaments stimulate nucleation by producing a fivefold increase in the affinity of WASP-WA for the Arp2/3 complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: WASP constructs and nucleation reactions.
Figure 2: Kinetics and thermodynamics of binding of the WA domain to actin monomers and to the Arp2/3 complex.
Figure 3: Actin-filament nucleation by the Arp2/3 complex activated by WASP-WA constructs.

Similar content being viewed by others

References

  1. Machesky, L. M., Atkinson, S. J., Ampe, C., Vandekerckhove, J. & Pollard, T. D. Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin agarose. J. Cell Biol. 127, 107–115 (1994).

    Article  CAS  Google Scholar 

  2. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high-affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  Google Scholar 

  3. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASp/Scar proteins. Nature 404, 1007–1011 (2000).

    Article  CAS  Google Scholar 

  4. Kelleher, J. F., Atkinson, S. J. & Pollard, T. D. Sequences, structural models, and cellular localization of the actin-related proteins Arp2 and Arp3 from Acanthamoeba. J. Cell Biol. 131, 385–397 (1995).

    Article  CAS  Google Scholar 

  5. Welch, M. D., DePace, A. H., Verma, S., Iwamatsu, A. & Mitchison, T. J. The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filament assembly. J. Cell Biol. 138, 375–384 (1997).

    Article  CAS  Google Scholar 

  6. Machesky, L. M. et al. Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem. J. 328, 105–112 (1997).

    Article  CAS  Google Scholar 

  7. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  8. Higgs, H. N., Blanchoin, L. & Pollard, T. D. Influence of the Wiskott–Aldrich syndrome protein (WASp) C terminus and Arp2/3 complex on actin polymerization. Biochemistry 38, 15212–15222 (1999).

    Article  CAS  Google Scholar 

  9. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  Google Scholar 

  10. Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein WASP regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol. 8, 1347–1356 (1998).

    Article  CAS  Google Scholar 

  11. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  Google Scholar 

  12. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999).

    Article  CAS  Google Scholar 

  13. Winter, D., Lechler, T. & Li, R. Activation of the yeast Arp2/3 complex by Bee1p, a WASP-family protein. Curr. Biol. 9, 501–504 (1999).

    Article  CAS  Google Scholar 

  14. Yarar, D., To, W., Abo, A. & Welch, M. D. The Wiskott–Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr. Biol. 9, 555–558 (1999).

    Article  CAS  Google Scholar 

  15. Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich Syndrome protein. Nature 404, 151–158 (2000).

    Article  CAS  Google Scholar 

  16. Fedorov, A. A., Lappalainen, P., Fedorov, E. V., Drubin, D. G. & Almo, S. C. Structure determination of yeast cofilin. Nature Struct. Biol. 4, 366–369 (1997).

    Article  CAS  Google Scholar 

  17. Leonard, S. A., Gittis, A. G., Petrella, E. C., Pollard, T. D. & Lattman, E. E. Crystal structure of the actin-binding protein actophorin from Acanthamoeba. Nature Struct. Biol. 4, 369–373 (1997).

    Article  CAS  Google Scholar 

  18. Ochs, H. D. The Wiskott–Aldrich Syndrome. Sem. Hematol. 35, 332–345 (1998).

    CAS  Google Scholar 

  19. Prehoda, K. E., Lee, D. J. & Lim, W. A. Structure of the Enabled/VASP Homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Cell 97, 471–480 (1999).

    Article  CAS  Google Scholar 

  20. Fedorov, A. A., Fedorov, E., Gertler, F. & Almo, S. C. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nature Struct. Biol. 6, 661–665 (1999).

    Article  CAS  Google Scholar 

  21. Abdul-Manan, N. et al. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott–Aldrich Syndrome' protein. Nature 399, 379–383 (1999).

    Article  CAS  Google Scholar 

  22. Higgs, H. N. & Pollard, T. P. Wiskott–Aldrich Syndrome protein (WASp) activation of Arp2/3 complex: effects of phosphatidylinositol-4,5-bisphosphate and Cdc42. J. Cell Biol. 150, 1311–1320 (2000).

    Article  CAS  Google Scholar 

  23. Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146, 1319–1332 (1999).

    Article  CAS  Google Scholar 

  24. Rohatgi, R., Ho, H-y. H. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150, 1299–1310 (2000).

    Article  CAS  Google Scholar 

  25. Vinson, V. K., De La Cruz, E. M., Higgs, H. N. & Pollard, T. D. Interactions of Acanthamoeba profilin with actin and nucleotides bound to actin. Biochemistry 37, 10871–10880 (1998).

    Article  CAS  Google Scholar 

  26. Blanchoin, L. & Pollard, T. D. Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and profilin. J. Biol. Chem. 273, 25106–25111 (1998).

    Article  CAS  Google Scholar 

  27. Blanchoin, L. & Pollard, T. D. Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J. Biol. Chem. 274, 15538–15546 (1999).

    Article  CAS  Google Scholar 

  28. Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J. 15, 5326–5335 (1996).

    Article  Google Scholar 

  29. Kolluri, R. et al. Identification of WASP mutations in patients with Wiskott–Aldrich Syndrome and isolated thrombocytopenia reveals allelic heterogeneity at the WAS locus. Hum. Mol. Genet. 4, 1119–1126 (1995).

    Article  CAS  Google Scholar 

  30. Derry, J. M. J. et al. WASP gene mutations in Wiskott–Aldrich Syndrome and X-linked thrombocytopenia. Hum. Mol. Genet. 4, 1127–1135 (1995).

    Article  CAS  Google Scholar 

  31. Schwarz, K. et al. WASPbase: a database of WAS- and XLT-causing mutations. Immunol. Today 17, 496–502 (1996).

    Article  CAS  Google Scholar 

  32. Pollard, T. D. & Cooper, J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23, 6631–6641 (1984).

    Article  CAS  Google Scholar 

  33. Morton, W. M., Ayscough, K. R. & McLaughlin, P. J. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biol. 2, 376–378 (2000).

    Article  CAS  Google Scholar 

  34. Jean, C. et al. Interaction of G-actin with thymosin beta 4 and its variants thymosin beta 9 and thymosin beta met9. J. Muscle Res. Cell Motil. 15, 278–286 (1994).

    Article  CAS  Google Scholar 

  35. Cameron, L. A., Footer, M. J., van Oudenaarden, A. & Theriot, J. A. Motility of ActA protein-coated microspheres driven by actin polymerization. Proc. Natl Acad. Sci. USA 96, 4908–4913 (1999).

    Article  CAS  Google Scholar 

  36. MacLean-Fletcher, S. & Pollard, T. D. Identification of a factor in conventional muscle actin preparation which inhibits actin filament self-association. Biochem. Biophys. Res. Comm. 96, 18–27 (1980).

    Article  CAS  Google Scholar 

  37. Fedorov, A. A., Pollard, T. D. & Almo, S. C. Purification, characterization and crystallization of human platelet profilin expressed in Escherichia coli. J. Mol. Biol. 241, 480–482 (1994).

    Article  CAS  Google Scholar 

  38. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. & Pease, L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  Google Scholar 

  39. Manavalan, P. & Johnson, W. C. Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal. Biochem. 167, 76–85 (1987).

    Article  CAS  Google Scholar 

  40. Sreerama, N. & Woody, R. W. A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal. Biochem. 209, 32–44 (1993).

    Article  CAS  Google Scholar 

  41. Provencher, S. W. & Glockner, J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20, 33–37 (1981).

    Article  CAS  Google Scholar 

  42. Bohm, G., Muhr, R. & Jaenicke, R. Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng. 5, 191–195 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Blanchoin, K. Amann, W-L. Lee (analytical ultracentrifugation), S. C. Koerber (circular-dichroism spectroscopy) and J. Meisenhelder of the Salk Institute for help with this work. This work was supported by NIH Research Grant GM-26338 (to T.D.P.), an NIH Postdoctoral Fellowship (to H.N.H.), a postdoctoral fellowship from Association pour la Recherche sur le Cancer (ARC) and the Philippe Foundation (to J.B.M.), and a gift to the laboratory from S. Hammerslag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Pollard.

Supplementary information

Figure S1

Mutations in WASP-WA do not affect actin-filament branching or interaction with WASP-GBD. (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchand, JB., Kaiser, D., Pollard, T. et al. Interaction of WASP/Scar proteins with actin and vertebrate Arp2/3 complex. Nat Cell Biol 3, 76–82 (2001). https://doi.org/10.1038/35050590

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35050590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing