Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells

Abstract

The mitotic checkpoint protein hsMad2 is required to arrest cells in mitosis when chromosomes are unattached to the mitotic spindle1. The presence of a single, lagging chromosome is sufficient to activate the checkpoint, producing a delay at the metaphase–anaphase transition until the last spindle attachment is made2. Complete loss of the mitotic checkpoint results in embryonic lethality owing to chromosome mis-segregation in various organisms3,4,5,6. Whether partial loss of checkpoint control leads to more subtle rates of chromosome instability compatible with cell viability remains unknown. Here we report that deletion of one MAD2 allele results in a defective mitotic checkpoint in both human cancer cells and murine primary embryonic fibroblasts. Checkpoint-defective cells show premature sister-chromatid separation in the presence of spindle inhibitors and an elevated rate of chromosome mis-segregation events in the absence of these agents. Furthermore, Mad2+/- mice develop lung tumours at high rates after long latencies, implicating defects in the mitotic checkpoint in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hct-MAD2+/-cells have a mitotic checkpoint defect.
Figure 2: Inappropriate degradation of securin in Hct-MAD2+/- cells.
Figure 3: Karyotype analysis of genomic instability in Hct-MAD2+/- cell lines.
Figure 4: Interphase FISH analysis using chromosome-specific FISH probes on Hct-116 and Hct-MAD2+/- cells.

Similar content being viewed by others

References

  1. Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246 –248 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130, 941–948 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Basu, J. et al. Mutations in the essential spindle checkpoint gene bub1 cause chromosome missegregation and fail to block apoptosis in Drosophila. J. Cell Biol. 146, 13–28 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kitagawa, R. & Rose, A. M. Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nature Cell Biol. 1, 514–521 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  5. Dobles, M., Liberal, V., Scott, M., Benezra, R. & Sorger, P. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101, 635–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Kalitsis, P., Earle, E., Fowler, K. J. & Choo, K. H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev. 14, 2277– 2282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. DeVita, V., Hellman, S. & Rosenberg, S. (eds) Cancer—Principles and Practice (Lipincott-Raven, New York, 1997).

    Google Scholar 

  9. Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300–303 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 ( 1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Waldman, T., Lengauer, C., Kinzler, K. W. & Vogelstein, B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381, 713–716 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Li, Y., Gorbea, C., Mahaffey, D., Rechsteiner, M. & Benezra, R. MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl Acad. Sci. USA 94, 12431–12436 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang, G., Yu, H. & Kirschner, M. W. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12, 1871 –1883 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wassmann, K. & Benezra, R. Mad2 transiently associates with an APC/p55Cdc complex during mitosis. Proc. Natl Acad. Sci. USA 95, 11193–11198 ( 1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Alexandru, G., Zachariae, W., Schleiffer, A. & Nasmyth, K. Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18, 2707–2721 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rudner, A. D. & Murray, A. W. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8, 773– 780 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Rudner, A. D., Hardwick, K. G. & Murray, A. W. Cdc28 activates exit from mitosis in budding yeast. J. Cell Biol. 149, 1361– 1376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minshull, J. et al. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol. 6, 1609–1620 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Tuveson, D. A. & Jacks, T. Modeling human lung cancer in mice: similarities and shortcomings. Oncogene 18, 5318–5324 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet. 20, 189–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Spruck, C. H., Won, K. A. & Reed, S. I. Deregulated cyclin E induces chromosome instability. Nature 401, 297–300 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Takahashi, T. et al. Identification of frequent impairment of the mitotic checkpoint and molecular analysis of the mitotic checkpoint genes, hsMAD2 and p55CDC, in human lung cancers. Oncogene 18, 4295 –4300 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Cahill, D. P. et al. Characterization of MAD2B and other mitotic spindle checkpoint genes. Genomics 58, 181– 187 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Krishnan, R. et al. Map location and gene structure of the Homo sapiens mitotic arrest deficient 2 (MAD2L1) gene at 4q27. Genomics 49, 475–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Rashid, A. et al. Genetic alterations in hepatocellular carcinomas: association between loss of chromosome 4q and p53 gene mutations. Br. J. Cancer 80, 59–66 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dohner, H., Bloomfield, C. D., Frizzera, G., Frestedt, J. & Arthur, D. C. Recurring chromosome abnormalities in Hodgkin's disease. Genes Chromosom. Cancer 5, 392–398 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Shivapurkar, N. et al. Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas. Cancer Res. 59, 3576 –3580 (1999).

    CAS  PubMed  Google Scholar 

  29. Verma, R. & Babu, A. Human Chromosomes: Principles and Techniques (McGraw Hill, New York, 1995).

    Google Scholar 

Download references

Acknowledgements

We thank M. Kirschner for the anti-securin antibody. A.C. performed all cytogenetic and FISH experiments. This work was supported by an NRSA-NIH grant (L.M.); PRAXISXXI, Portugal (V.L.); International Union Against Cancer (ACS-IFB) Fellowship (A.C.); and grants from the NIH (R.B., B.P., P.K.S. and V.V.V.S.M.). We also thank A. Hata and G. Farmer for technical advice, and H. Thaler for statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Benezra.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, L., Liberal, V., Chatterjee, A. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355–359 (2001). https://doi.org/10.1038/35053094

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053094

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing