Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Escape from premature senescence is not sufficient for oncogenic transformation by Ras

Abstract

Resistance of primary cells to transformation by oncogenic Ras has been attributed to the induction of replicative growth arrest1,2,3. This irreversible 'fail-safe mechanism' resembles senescence and requires induction by Ras of p19ARF and p53 (refs 35). Mutation of either p19ARF or p53 alleviates Ras-induced senescence and facilitates oncogenic transformation by Ras3,6,7. Here we report that, whereas Rb and p107 are each dispensable for Ras-induced replicative arrest, simultaneous ablation of both genes disrupts Ras-induced senescence and results in unrestrained proliferation. This occurs despite activation by Ras of the p19ARF/p53 pathway, identifying pRb and p107 as essential mediators of Ras-induced antiproliferative p19ARF/p53 signalling. Unexpectedly, in contrast to p19ARF or p53 deficiency, loss of Rb/p107 function does not result in oncogenic transformation by Ras, as Ras-expressing Rb−/−/p107−/− fibroblasts fail to grow anchorage-independently in vitro and are not tumorigenic in vivo. These results demonstrate that in the absence of both Rb and p107 cells are resistant to p19ARF/p53-dependent protection against Ras-induced proliferation, and uncouple escape from Ras-induced premature senescence from oncogenic transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Primary Rb−/−/p107−/− fibroblasts fail to undergo RasV12-induced premature senescence.
Figure 2: Continued proliferation of parental and RasV12-expressing primary Rb−/−/p107−/− fibroblasts.
Figure 3: Signalling from RasV12 to the p16INK4a and p19ARF/p53 pathways is intact in primary Rb−/−/p107−/− fibroblasts.
Figure 4: Rb−/−/p107−/− MEFs are under no selective pressure to lose expression of RasV12 or mutate p53 during prolonged culture.

Similar content being viewed by others

References

  1. Newbold, R. F. & Overell, R. W. Nature 304, 648–651 (1983).

    Article  CAS  Google Scholar 

  2. Franza, B. R., Maruyama, K., Garrels, J. I. & Ruley, H. E. Cell 44, 409–418 ( 1986).

    Article  CAS  Google Scholar 

  3. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  4. Palmero, I., Pantoja, C. & Serrano, M. Nature 395, 125– 126 (1998).

    Article  CAS  Google Scholar 

  5. Sherr, C. J. Genes Dev. 12, 2984–2991 (1998).

    Article  CAS  Google Scholar 

  6. Kamijo, T. et al. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

  7. Tanaka, N. et al. Cell 77, 829–839 (1994).

    Article  CAS  Google Scholar 

  8. Weinberg, R. A. Cell 88, 573–575 ( 1997).

    Article  CAS  Google Scholar 

  9. Chin, L. et al. Genes Dev. 11, 2822–2834 (1997).

    Article  CAS  Google Scholar 

  10. Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596– 602 (1983).

    Article  CAS  Google Scholar 

  11. Ruley, H. E. Nature 304, 602–606 ( 1983).

    Article  CAS  Google Scholar 

  12. Weinberg, R. A. Cancer Res. 49, 3713–3721 (1989).

    CAS  PubMed  Google Scholar 

  13. Peeper, D. S. et al. Nature 386, 177–181 (1997).

    Article  CAS  Google Scholar 

  14. Serrano, M. et al. Cell 85, 27–37 (1996).

    Article  CAS  Google Scholar 

  15. Noda, A., Ning, Y., Venable, S. F., Pereira-Smith, O. M. & Smith, J. R. Exp. Cell Res. 211, 90– 98 (1994).

    Article  CAS  Google Scholar 

  16. Hara, E. et al. Mol. Cell. Biol. 16, 859– 867 (1996).

    Article  CAS  Google Scholar 

  17. Herrera, R. E. et al. Mol. Cell. Biol. 16, 2402– 2407 (1996).

    Article  CAS  Google Scholar 

  18. Lu, X., Park, S. H., Thompson, T. C. & Lane, D. P. Cell 70, 153–161 ( 1992).

    Article  CAS  Google Scholar 

  19. Robanus-Maandag, E. et al. Genes Dev. 12, 1599– 1609 (1998).

    Article  CAS  Google Scholar 

  20. Bates, S. et al. Nature 395, 124–125 (1998).

    Article  CAS  Google Scholar 

  21. Carnero, A., Hudson, J. D., Price, C. M. & Beach, D. H. Nature Cell Biol. 2, 148–155 (2000).

    Article  CAS  Google Scholar 

  22. te Riele, H., Maandag, E. R. & Berns, A. Proc. Natl Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  Google Scholar 

  23. Dannenberg, J. H., van Rossum, A., Schuijff, L. & te Riele, H. Genes Dev. 14, 3051–3064 (2000).

    Article  CAS  Google Scholar 

  24. Morgenstern, J. P. & Land, H. Nucleic Acids Res. 18, 3587–3596 ( 1990).

    Article  CAS  Google Scholar 

  25. Kanda, T., Sullivan, K. F. & Wahl, G. M. Curr. Biol. 8, 377– 385 (1998).

    Article  CAS  Google Scholar 

  26. van den Heuvel, S. & Harlow, E. Science 262, 2050–2054 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Dekker-Vlaar, K. van't Wout and the animal facility (Netherlands Cancer Institute) for help with generating chimaeric mice, isolating and preparing mouse embryos and tumour-induction experiments, J. Jonkers for providing p53−/− MEFs, R. A. DePinho, P. Krimpenfort and J. Jacobs for INK4a−/− MEFs, C. J. Sherr for ARF−/− MEFs, J-W. Voncken, E. Wientjes and E. Verhoeven for Ras and Myc retroviral vectors, G. Nolan for retroviral packaging cells, our colleagues for helpful discussions, and A. Berns for critically reading the manuscript. D.S.P., J-H.D. and S.D. were supported by grants from the Dutch Cancer Society (KWF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Bernards.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeper, D., Dannenberg, JH., Douma, S. et al. Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nat Cell Biol 3, 198–203 (2001). https://doi.org/10.1038/35055110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing