Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The gating mechanism of the large mechanosensitive channel MscL

Abstract

The mechanosensitive channel of large conductance, MscL, is a ubiquitous membrane-embedded valve involved in turgor regulation in bacteria1,2,3,4,5. The crystal structure of MscL from Mycobacterium tuberculosis6 provides a starting point for analysing molecular mechanisms of tension-dependent channel gating. Here we develop structural models in which a cytoplasmic gate is formed by a bundle of five amino-terminal helices (S1), previously unresolved in the crystal structure. When membrane tension is applied, the transmembrane barrel expands and pulls the gate apart through the S1–M1 linker. We tested these models by substituting cysteines for residues predicted to be near each other only in either the closed or open conformation. Our results demonstrate that S1 segments form the bundle when the channel is closed, and crosslinking between S1 segments prevents opening. S1 segments interact with M2 when the channel is open, and crosslinking of S1 to M2 impedes channel closing. Gating is affected by the length of the S1–M1 linker in a manner consistent with the model, revealing critical spatial relationships between the domains that transmit force from the lipid bilayer to the channel gate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MscL gating represented ‘mechanistically’.
Figure 2: Molecular models of EcoMscL backbone.
Figure 3: Residue interactions in three predicted conformations.
Figure 4: Disulphide trapping of S1 segments of MscL.
Figure 5: S1 interacts with M2 in the open state.
Figure 6: The GG14 mutant with extended S1–M1 linker shows higher occupancies of lower sub-conducting states.

Similar content being viewed by others

References

  1. Sukharev, S. I., Blount, P., Martinac, B. & Kung, C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu. Rev. Physiol. 59, 633–657 (1997).

    Article  CAS  Google Scholar 

  2. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999).

    Article  CAS  Google Scholar 

  3. Moe, P. C., Blount, P. & Kung, C. Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol. Microbiol. 28, 583–592 (1998).

    Article  CAS  Google Scholar 

  4. Blount, P. & Moe, P. C. Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol. 7, 420–424 (1999).

    Article  CAS  Google Scholar 

  5. Spencer, R. H., Chang, G. & Rees, D. C. ‘Feeling the pressure’: structural insights into a gated mechanosensitive channel. Curr. Opin. Struct. Biol. 9, 448–454 (1999). (Erratum, Curr. Opin. Struct. Biol. 9, 650–651 (1999).)

    Article  CAS  Google Scholar 

  6. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Sukharev, S. I., Sigurdson, W. J., Kung, C. & Sachs, F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–540 (1999).

    Article  CAS  Google Scholar 

  8. Cruickshank, C. C., Minchin, R. F., Le Dain, A. C. & Martinac, B. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73, 1925–1931 (1997).

    Article  CAS  Google Scholar 

  9. Batiza, A. F., Rayment, I. & Kung, C. Channel gate! Tension, leak and disclosure. Structure Fold. Des. 7, R99–R103 (1999).

    Article  CAS  Google Scholar 

  10. Blount, P., Sukharev, S. I., Moe, P. C., Nagle, S. K. & Kung, C. Towards an understanding of the structural and functional properties of MscL, a mechanosensitive channel in bacteria. Biol. Cell 87, 1–8 (1996).

    Article  CAS  Google Scholar 

  11. Bowie, J. U. Helix packing in membrane proteins. J. Mol. Biol. 272, 780–789 (1997).

    Article  CAS  Google Scholar 

  12. Sukharev, S. I., Durell, S. R. & Guy, H. R. Molecular modeling of the gating transition of the large mechanosensitive channel, MscL. Biophys. J. (submitted).

  13. Liu, W. & Dietmer, W. M. B. Glycine G14, the amino acid essential for electromechanical coupling in gating the MscL of E. coli by mechanical force. Biophys. J. 76, A203. (1999).

    Article  Google Scholar 

  14. Maurer, J. A., Elmore, D. E., Lester, H. A. & Dougherty, D. A. Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL). New gain of function mutations in the loop region. J. Biol. Chem. 275, 22238–22244 (2000).

    Article  CAS  Google Scholar 

  15. Ou, X., Blount, P., Hoffman, R. J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl Acad. Sci. USA 95, 11471–11475 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Yoshimura, K., Batiza, A., Schroeder, M., Blount, P. & Kung, C. Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys. J. 77, 1960–1972 (1999).

    Article  CAS  Google Scholar 

  17. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J. & Swamminathan, S. A program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  18. Blount, P. et al. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J. 15, 4798–4805 (1996).

    Article  CAS  Google Scholar 

  19. Pakula, A. A. & Simon, M. I. Determination of transmembrane protein structure by disulfide cross-linking: the Escherichia coli Tar receptor. Proc. Natl Acad. Sci. USA 89, 4144–4148 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Blount, P., Sukharev, S. I., Schroeder, M. J., Nagle, S. K. & Kung, C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl Acad. Sci. USA 93, 11652–11657 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Martinac, B., Buechner, M., Delcour, A. H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl Acad. Sci. USA 84, 2297–2301 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Durell for helpful discussion. The experimental part of this work was supported by NASA and NIH research grants to S.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Sukharev.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sukharev, S., Betanzos, M., Chiang, CS. et al. The gating mechanism of the large mechanosensitive channel MscL. Nature 409, 720–724 (2001). https://doi.org/10.1038/35055559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35055559

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing