Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotopic evidence for microbial sulphate reduction in the early Archaean era

Abstract

Sulphate-reducing microbes affect the modern sulphur cycle, and may be quite ancient1,2, though when they evolved is uncertain. These organisms produce sulphide while oxidizing organic matter or hydrogen with sulphate3. At sulphate concentrations greater than 1 mM, the sulphides are isotopically fractionated (depleted in 34S) by 10–40‰ compared to the sulphate, with fractionations decreasing to near 0‰ at lower concentrations2,4,5,6. The isotope record of sedimentary sulphides shows large fractionations relative to seawater sulphate by 2.7 Gyr ago, indicating microbial sulphate reduction7. In older rocks, however, much smaller fractionations are of equivocal origin, possibly biogenic but also possibly volcanogenic2,8,9,10. Here we report microscopic sulphides in 3.47-Gyr-old barites from North Pole, Australia, with maximum fractionations of 21.1‰, about a mean of 11.6‰, clearly indicating microbial sulphate reduction. Our results extend the geological record of microbial sulphate reduction back more than 750 million years, and represent direct evidence of an early specific metabolic pathway—allowing time calibration of a deep node on the tree of life.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between sulphur species at North Pole, Australia.
Figure 2
Figure 3: The secular trends in the isotopic composition of seawater sulphate and sulphide over geological time.
Figure 4: The tree of life based on SSU rRNA sequence analysis, with some temporal constraints on branching.

Similar content being viewed by others

References

  1. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975–2982 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Postgate, J. R. The Sulphate-Reducing Bacteria 2nd edn (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  4. Harrison, A. G. & Thode, H. G. Mechanisms of the bacterial reduction of sulphate from isotope fractionation studies. Trans. Faraday Soc. 53, 84–92 (1958).

    Article  Google Scholar 

  5. Kaplan, I. R. & Rittenberg, S. C. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34, 195–212 (1964).

    Article  CAS  Google Scholar 

  6. Knoll, A. H. & Canfield, D. E. Isotopic inferences on early ecosystems. Paleontol. Soc. Pap. 4, 212–243 (1998).

    Article  Google Scholar 

  7. Goodwin, A. M., Monster, J. & Thode, H. G. Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life. Econ. Geol. 71, 870–891 (1976).

    Article  CAS  Google Scholar 

  8. Cameron, E. M. Sulphate and sulphate reduction in early Precambrian. Nature 296, 145–148 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Hayes, J. M., Lambert, I. B. & Strauss, H. in The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 129–134 (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  10. Ohmoto, H., Kakegawa, T. & Lowe, D. R. 3.4-billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. Science 262, 555–557 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Buick, R. & Dunlop, J. S. R. Evaporitic sediments of early Archaean age from the Warrawoona Group, North Pole, Western Australia. Sedimentology 37, 247–277 (1990).

    Article  ADS  Google Scholar 

  12. Buick, R. et al. Record of emergent continental crust 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375, 574–577 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Buick, R. & Barnes, K. R. Cherts in the Warrawoona Group: early Archaean silicified sediments deposited in shallow water environments. Univ. West. Aust. Geol. Dept Univ. Extension Spec. Publ. 9, 37–53 (1984).

    Google Scholar 

  14. Lambert, I. B., Donnelly, T. H., Dunlop, J. S. R. & Groves, D. I. Stable isotope compositions of early Archaean sulphate deposits of probable evaporite and volcanogenic origins. Nature 276, 808–810 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Groves, D. I., Dunlop, J. S. R. & Buick, R. An early habitat of life. Sci. Am. 245, 64–73 (1981).

    Article  Google Scholar 

  16. Nijman, W., de Bruijne, K. C. H. & Valkering, M. E. Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia. Precambr. Res. 88, 25–52 (1999).

    Article  ADS  Google Scholar 

  17. Rankin, A. H. & Shepherd, T. J. H2S-bearing fluid inclusions in baryte from the North Pole deposit, Western Australia. Mineral. Mag. 42, 408–410 (1978).

    Article  CAS  Google Scholar 

  18. Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 517–611 (Wiley, New York, 1997).

    Google Scholar 

  19. Cameron, E. M. & Hattori, K. Archean gold mineralization and oxidized hydrothermal fluids. Econ. Geol. 82, 1177–1191 (1987).

    Article  CAS  Google Scholar 

  20. Hardie, L. A. The gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Mineral. 52, 171–200 (1967).

    CAS  Google Scholar 

  21. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Schidlowski, M. A 3800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333, 313–318 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Schopf, J. W. & Packer, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from the Warrawoona Group, Australia. Science 237, 70–73 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Widdel, F. in Biology of Anaerobic Microorganisms (ed. Zehnder, A. J. B.) 496–585 (Wiley, New York, 1988).

    Google Scholar 

  26. Stetter, K. O. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) (eds Bock, G. R. & Goode, J. A.) 1–10 (Wiley, New York, 1996).

    Google Scholar 

  27. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  Google Scholar 

  28. Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M. & Berner, R. A. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem. Geol. 54, 149–155 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).

    Article  ADS  CAS  Google Scholar 

  30. Knoll, A. H. A new molecular window on early life. Science 285, 1025–1026 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. S. R. Dunlop for suggesting that we should examine the isotopic systematics of microscopic sulphur species in the North Pole barite; K.-U. Hinrichs, K. Londry, R. Summons, B. Thamdrup and K. Habicht for discussions; I. O'Brien, O. Thomas and L. Salling for technical assistance; and D. Des Marais for comments and suggestions. This work was supported by the Danish Grundforkningsfond (Basic Research Foundation) and by the Australian Research Council (R.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanan Shen.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Buick, R. & Canfield, D. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410, 77–81 (2001). https://doi.org/10.1038/35065071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065071

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing