Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visualizing the generation of memory CD4 T cells in the whole body

Abstract

It is thought that immunity depends on naïve CD4 T cells that proliferate in response to microbial antigens1,2,3,4, differentiate into memory cells that produce anti-microbial lymphokines5,6, and migrate to sites of infection7,8. Here we use immunohistology to enumerate individual naïve CD4 T cells, specific for a model antigen, in the whole bodies of adult mice. The cells resided exclusively in secondary lymphoid tissues, such as the spleen and lymph nodes, in mice that were not exposed to antigen. After injection of antigen alone into the blood, the T cells proliferated, migrated to the lungs, liver, gut and salivary glands, and then disappeared from these organs. If antigen was injected with the microbial product lipopolysaccharide, proliferation and migration were enhanced, and two populations of memory cells survived for months: one in the lymph nodes that produced the growth factor interleukin-2, and a larger one in the non-lymphoid tissues that produced the anti-microbial lymphokine interferon-γ. These results show that antigen recognition in the context of infection generates memory cells that are specialized to proliferate in the secondary lymphoid tissues or to fight infection at the site of microbial entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of antigen-specific T cells in whole-body sections.
Figure 2: Tissue distribution of antigen-specific T cells during a primary immune response.
Figure 3: Quantification of antigen-specific T cells.
Figure 4: Lymphokine production by antigen-specific CD4 T cells.

Similar content being viewed by others

References

  1. Kyburz, D. et al. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur. J. Immunol. 23, 1956–1962 (1993).

    Article  CAS  Google Scholar 

  2. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  Google Scholar 

  3. McHeyzer-Williams, M. G. & Davis, M. M. Antigen-specific development of primary and memory T cells in vivo. Science 268, 106–111 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  5. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Dutton, R. W., Bradley, L. M. & Swain, S. L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  7. Mackay, C. R. Homing of naive, memory and effector lymphocytes. Curr. Opin. Immunol. 5, 423–427 (1993).

    Article  CAS  Google Scholar 

  8. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Pape, K. A. et al. Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunol. Rev. 156, 67–78 (1997).

    Article  CAS  Google Scholar 

  10. Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell. Biol. 76, 34–40 (1998).

    Article  CAS  Google Scholar 

  11. Dresser, D. W. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Nature 191, 1169–1171 (1962).

    Article  ADS  Google Scholar 

  12. Chiller, J. M., Habicht, G. S. & Weigle, W. O. Kinetic differences in unresponsiveness of thymus and bone marrow cells. Science 171, 813–815 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Chiller, J. M. & Weigle, W. O. Termination of tolerance to human gamma globulin in mice by antigen and bacterial lipopolysaccharide (endotoxin). J. Exp. Med. 137, 740–750 (1973).

    Article  CAS  Google Scholar 

  14. Southern, P. J., Blount, P. & Oldstone, M. B. Analysis of persistent virus infections by in situ hybridization to whole-mouse sections. Nature 312, 555–558. (1984).

    Article  ADS  CAS  Google Scholar 

  15. Pape, K. A., Khoruts, A., Mondino, A. & Jenkins, M. K. Inflammatory cytokines enhance the in vivo clonal expansion and differentiation of antigen-activated CD4+ T cells. J. Immunol. 159, 591–598 (1997).

    CAS  PubMed  Google Scholar 

  16. Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Pape, K. A., Merica, R., Mondino, A., Khoruts, A. & Jenkins, M. K. Direct evidence that functionally impaired CD4+ T cells persist in vivo following induction of peripheral tolerance. J. Immunol. 160, 4719–4729 (1998).

    CAS  PubMed  Google Scholar 

  18. Bradley, L. M. & Watson, S. R. Lymphocyte migration into tissue: the paradigm derived from CD4 subsets. Curr. Opin. Immunol. 8, 312–320 (1996).

    Article  CAS  Google Scholar 

  19. Alferink, J. et al. Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking. Science 282, 1338–1341 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Bell, E. B. & Sparshott, S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature 348, 163–166 (1990).

    Article  ADS  CAS  Google Scholar 

  21. Westermann, J. & Pabst, R. How organ-specific is the migration of ‘naı¨ve’ and ‘memory’ T cells? Immunol. Today 17, 278–282 (1996).

    Article  CAS  Google Scholar 

  22. Vella, A. T., McCormack, J. E., Linsley, P. S., Kappler, J. W. & Marrack, P. Lipopolysaccharide interferes with the induction of peripheral T cell death. Immunity 2, 261–270 (1995).

    Article  CAS  Google Scholar 

  23. Khoruts, A., Mondino, A., Pape, K. A., Reiner, S. L. & Jenkins, M. K. A natural immunological adjuvant enhances T cell clonal expansion through a CD28-dependent, interleukin (IL)-2-independent mechanism. J. Exp. Med. 187, 225–236 (1998).

    Article  CAS  Google Scholar 

  24. Kim, S. K. et al. Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proc. Natl Acad. Sci. USA 95, 10814–10819 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Kim, S. K., Schluns, K. S. & Lefrancois, L. Induction and visualization of mucosal memory CD8 T cells following systemic virus infection. J. Immunol. 163, 4125–4132 (1999).

    CAS  PubMed  Google Scholar 

  26. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Haskins, K. et al. The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J. Exp. Med. 157, 1149–1169 (1983).

    Article  CAS  Google Scholar 

  28. Lyons, A. B. & Parish, C. R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  29. Merica, R., Khoruts, A., Pape, K. A., Reinhardt, R. L. & Jenkins, M. K. Antigen-experienced CD4 T cells display a reduced capacity for clonal expansion in vivo that is imposed by factors present in the immune host. J. Immunol. 164, 4551–4557 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Walter for technical assistance; D. Mueller, S. Jameson, M. Mescher, A. Haase, P. Southern, R. A. Reinhardt and K. Hogquist for discussions; L. Lefrancois for supplying OT-II mice; and Gerald Sedgewick for help with image analysis. Supported by grants from the NIH (M.K.J., A.K., R.M. and R.L.R.), the Cancer Research Institute (T.Z.), and the Howard Hughes Medical Institute (A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc K. Jenkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhardt, R., Khoruts, A., Merica, R. et al. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001). https://doi.org/10.1038/35065111

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065111

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing