Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins

Abstract

Distinct modifications of histone amino termini, such as acetylation, phosphorylation and methylation, have been proposed to underlie a chromatin-based regulatory mechanism1,2 that modulates the accessibility of genetic information. In addition to histone modifications that facilitate gene activity, it is of similar importance to restrict inappropriate gene expression3,4 if cellular and developmental programmes are to proceed unperturbed. Here we show that mammalian methyltransferases that selectively methylate histone H3 on lysine 9 (Suv39h HMTases)5 generate a binding site for HP1 proteins—a family of heterochromatic adaptor molecules6,7 implicated in both gene silencing and supra-nucleosomal chromatin structure. High-affinity in vitro recognition of a methylated histone H3 peptide by HP1 requires a functional chromo domain; thus, the HP1 chromo domain is a specific interaction motif for the methyl epitope on lysine 9 of histone H3. In vivo, heterochromatin association of HP1 proteins is lost in Suv39h double-null primary mouse fibroblasts but is restored after the re-introduction of a catalytically active SUV39H1 HMTase. Our data define a molecular mechanism through which the SUV39H–HP1 methylation system can contribute to the propagation of heterochromatic subdomains in native chromatin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The H3 Lys 9 methyl epitope activates a specific binding site for HP1 proteins in vitro.
Figure 2: Mutant analysis of HP1β and quantitation of in vitro binding to the H3 K9-dimeth peptide matrix.
Figure 3: Characterization of transduced SUV39H1 HMTase activity in PMEFs.
Figure 4: Rescue of heterochromatic localization of HP1 proteins by an active SUV39H1 HMTase.

Similar content being viewed by others

References

  1. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  ADS  CAS  Google Scholar 

  2. Turner, B. M. Histone acetylation and an epigenetic code. BioEssays 22, 836–845 (2000).

    Article  CAS  Google Scholar 

  3. Paro, R. & Harte, P. J. in Epigenetic Mechanisms of Gene Regulation (eds Russo, V. A. E., Martienssen, R. A. & Riggs, A. D.) 507–528 (CSHL, New York, 1996).

    Google Scholar 

  4. Pirrotta, V. Polycombing the genome: PcG, trxG, and chromatin silencing. Cell 93, 333–336 (1998).

    Article  CAS  Google Scholar 

  5. Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Wallrath, L. L. Unfolding the mysteries of heterochromatin. Curr. Opin. Genet. Dev. 8, 147–153 (1998).

    Article  CAS  Google Scholar 

  7. Jones, D. A., Cowell, I. G. & Singh, P. B. Mammalian chromodomain proteins: their role in genome organisation and expression. BioEssays 22, 124–127 (2000).

    Article  CAS  Google Scholar 

  8. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science, 288, 1422–1425 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).

    Article  CAS  Google Scholar 

  10. Paro, R. & Hogness, D. S. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl Acad. Sci. USA 88, 263–267 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Ball, L. J. et al. Structure of the chromatin binding (chromo) domain from mouse modifier protein 1. EMBO J. 16, 2473–2481 (1997).

    Article  CAS  Google Scholar 

  12. Platero, J. S., Harnett, T. & Eissenberg, J. C. Functional analysis of the chromodomain of HP-1. EMBO J. 14, 3977–3986 (1995).

    Article  CAS  Google Scholar 

  13. Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 6, 1589–1607 (1992).

    Article  CAS  Google Scholar 

  14. Pierce, J. J., Singh, P. B. & Gaunt, S. J. The mouse has a polycomb-like chromobox gene. Development 114, 921–929 (1992).

    Google Scholar 

  15. Breiling, A., Bonte, E., Ferrari, S., Becker, P. B. & Paro, R. The Drosophila Polycomb protein interacts with nucleosomal core particles in vitro via its repression domain. Mol. Cell. Biol. 19, 8451–8460 (1999).

    Article  CAS  Google Scholar 

  16. Zhao, T., Heyduk, T., Allis, C. D. & Eissenberg, J. C. Heterochromatin protein 1 (HP1) binds to nucleosomes and DNA in vitro. J. Biol. Chem. 275, 28332–28338 (2000).

    CAS  Google Scholar 

  17. Brasher, S. V. et al. The structure of mouse HP1 suggets a unique mode of single peptide recognition by the shadow chromo domain dimer. EMBO J. 19, 1587–1597 (2000).

    Article  CAS  Google Scholar 

  18. Wreggett, K. A., Hill, F., James, P. S., Hutchings, G. W. & Singh, P. B. A mammalian homologue of Drosophila heterochromatin protein1 (HP1) is a component of constitutive heterochromatin. Cytogenet. Cell Genet. 66, 99–103 (1994).

    Article  CAS  Google Scholar 

  19. Minc, E., Allory, Y., Worman, H. J., Courvalin, J.-C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 (1999).

    Article  CAS  Google Scholar 

  20. Ekwall, K. et al. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109, 2637–2648 (1996).

    CAS  PubMed  Google Scholar 

  21. Melcher, M. et al. Structure–function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation and mitotic progression. Mol. Cell. Biol. 20, 3728–3741 (2000).

    Article  CAS  Google Scholar 

  22. Grosveld, F. Activation by locus control regions? Curr. Opin. Genet. Dev. 9, 152–157 (1999).

    Article  CAS  Google Scholar 

  23. Festenstein, R. et al. Heterochromatin protein 1 modifies mammalian PEV in a dose- and chromosomal context-dependent manner. Nature Genet. 23, 457-461 (1999).

    Article  Google Scholar 

  24. Nielsen, A. L. et al. Interaction with members of the heterochromatin protein 1 (HP1) family and histone deacetylation are differentially involved in transcriptional silencing by members of the TIF1 family. EMBO J. 18, 6385–6395 (1999).

    Article  CAS  Google Scholar 

  25. Ryan, R. F. et al. KAP-1 corepressor protein interacts and colocalizes with heterochromatic and euchromatic HP1 proteins: a potential role for Kruppel-associated box zinc finger proteins in heterochromatin-mediated gene silencing. Mol. Cell. Biol. 19, 4366–4378 (1999).

    Article  CAS  Google Scholar 

  26. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  Google Scholar 

  27. Murzina, N., Verreault, A., Laue, E. & Stillman, B. Heterochromatin dynamics in mouse cells: interaction between chromatin assembly factor 1 and HP1 proteins. Mol. Cell 4, 529–540 (1999).

    Article  CAS  Google Scholar 

  28. Taddei, A., Roche, D., Sibarita, J.-B., Turner, B. M. & Almouzni, G. Duplication and maintenance of heterochromatin domains. J. Cell. Biol. 147, 1153–1166 (1999).

    Article  CAS  Google Scholar 

  29. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  30. Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M. & Grunstein, M. Histone H3 and H4 N-termini interact with Sir3 and Sir4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80, 583–592 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Busslinger for the Pax5 cDNA; P. B. Singh for the HP1β (M31) and mPC1 (M33) cDNAs, and the HP1β antibodies; A. Verreault for the murine HP1α and HP1γ cDNAs; P. Chambon for HP1α antibodies; L. Huber for rabbit anti-Myc (9E10) antibodies; and Y. Zou for the MSCV–MIGR1 retroviral vectors. We acknowledge I. Gorny for help with peptide synthesis and M. Doyle for contributing to the Suv39h2 knock-out. We are grateful to D. Allis for discussions and to M. Busslinger for comments and critical reading of the manuscript. Research in T.J.'s laboratory is supported by the IMP through Boehringer Ingelheim, the Austrian Research Promotion Fund and the Vienna Economy Promotion Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jenuwein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachner, M., O'Carroll, D., Rea, S. et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001). https://doi.org/10.1038/35065132

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065132

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing