Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell signalling at the shoot meristem

Key Points

  • Plant development is fundamentally different from developmental patterning in most animals in that most of the body plan is established after embryogenesis. This is possible because plants retain two populations of stem cell — the shoot meristem and the root meristem.

  • Shoot meristems regulate organ formation be carefully balancing the maintenance of indifferentiated stem cells and the commitment of appropriately positioned cells towards differentiation.

  • Genetics screens are now revealing the signalling pathways that regulate this balance and the mechanisms that subsequently mediate organ development.

  • Screens in Arabidopsis thaliana for mutants that lack stem cells or have ectopic stem cells have uncovered a signal-transduction pathway that controls stem cell behaviour. The CLAVATA (CLV) signalling pathway components so far identified consist of a putative receptor kinase (CLV1), its dimerization partner (CLV2) and its proposed ligand (CLV3).

  • Other interacting proteins include the kinase associated protein phosphatase KAPP, which is proposed to negatively regulate CLV1, and ROP, a member of the small GTPase Ras superfamily, which might regulate downstream signalling.

  • WUSCHEL, a putative homeodomain-containing transcription factor that signals the stem-cell fate to overlying cells at the shoot meristem, is regulated, at least indirectly, by the CLV proteins. A feedback loop has been shown between WUS and CLV3, which allows a equilibrium to be achieved, resulting in a stable population of stem cells.

  • After the onset of differentiation, organs are initiated in distinct spatial patterns. Further analysis of PERIANTHIA, which is required for the right number of organs in the flower meristem, might shed light on how this occurs.

  • Other mutants have been identified that mediate organ separation during the early stages of organ intiation. Loss of STM, CUC1 or CUC2 results in fusion of the earliest organs initiated.

  • Organ polarity is initiated by asymmetric growth during the earliest stages of organ development. The molecules that direct this are being uncovered in snapdragon, maize and Arabidopsis, revealing conserved mechanisms.

Abstract

The regulation of cell differentiation at meristems is crucial to developmental patterning in plants. Rapid progress has been made in identifying the genes that regulate differentiation and the receptor-mediated signalling events that have a key role in this process. In particular, we are now learning how the CLAVATA receptor kinase signalling pathway promotes stem cell differentiation in balance with the initiation of stem cells by the transcription factor WUSCHEL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An adult Arabidopsis plant.
Figure 2: Cells layers and cell divisions.
Figure 3: The Arabidopsis thaliana shoot meristem.
Figure 4: The CLAVATA1 signalling pathway.
Figure 5: Stem-cell regulators.
Figure 6: Establishment of organ polarities within organ primordia.

Similar content being viewed by others

References

  1. Steeves, T. A. & Sussex, I. M. Patterns in Plant Development (Cambridge Univ. Press, New York, 1989).

    Book  Google Scholar 

  2. Lyndon, R. F. The Shoot Apical Meristem: Its Growth and Development 1– 277 (Cambridge Univ. Press, Cambridge, 1998).

    Google Scholar 

  3. Satina, S., Blakeslee, A. F. & Avery, A. G. Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras . Am. J. Bot. 27, 895–905 (1940).

    Article  Google Scholar 

  4. Jenik, P. D. & Irish, V. F. Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development 127, 1267–1276a (2000).

    CAS  PubMed  Google Scholar 

  5. Clark, S. E., Running, M. P. & Meyerowitz, E. M. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119, 397–418 (1993).

    CAS  PubMed  Google Scholar 

  6. Clark, S. E., Running, M. P. & Meyerowitz, E. M. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1 . Development 121, 2057– 2067 (1995).

    CAS  Google Scholar 

  7. Kayes, J. M. & Clark, S. E. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125, 3843–3851 ( 1998).

    CAS  PubMed  Google Scholar 

  8. Clark, S. E., Williams, R. W. & Meyerowitz, E. M. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575–585 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  9. Grossman, M., Weintraub, B. D. & Szkudlinski, M. W. Novel insights into the molecular mechanisms of human thyrotropin action: structural, physiological, and therapeutic implications for the glycoprotein hormone family. Endocr. Rev. 18 , 476–501 (1997).

    Article  Google Scholar 

  10. Williams, R. W., Wilson, J. M. & Meyerowitz, E. M. A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc. Natl Acad. Sci. USA 94, 10467–10472 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stone, J. M., Trotochaud, A. E., Walker, J. C. & Clark, S. E. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol. 117 , 1217–1235 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Trotochaud, A. E., Hao, T., Guang, W., Yang, Z. & Clark, S. E. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11, 393– 405 (1999).Characterization of CLV1 receptor protein complexes in wild-type and mutant plants, revealing inactive and active CLV1 complexes, the association of a putative Rho/Rac-GTPase, and the requirement for CLV3 in receptor activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeong, S., Trotochaud, A. E. & Clark, S. E. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925–1933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fletcher, J. C., Brand, U., Running, M. P., Simon, R. & Meyerowitz, E. M. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911–1914 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  15. Brand, U., Fletcher, J. C., Hobe, M., Meyerowitz, E. M. & Simon, R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289, 617–619 ( 2000).Overexpression of CLV3 reveals a regulatory feedback loop between CLV3 and WUS , providing a possible mechanism for the regulation of a stable stem-cell population.

    Article  CAS  PubMed  Google Scholar 

  16. Trotochaud, A. E., Jeong, S. & Clark, S. E. CLAVATA3, a mulitmeric ligand for the CLAVATA1 receptor-kinase . Science 289, 613–617 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Stone, J. M., Collinge, M. A., Smith, R. D., Horn, M. A. & Walker, J. C. Interaction of a protein phosphatase with an Arabidopsis serine/threonine receptor kinase. Science 266, 793–795 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  18. Li, J., Smith, G. P. & Walker, J. C. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. Proc. Natl Acad. Sci USA 96, 7821–7826 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, H., Wu, G., Ware, D., Davis, K. R. & Yang, Z. Arabidopsis Rop GTPases: Differential gene expression in pollen and polar localization in fission yeast. Plant Physiol. 118, 407–417 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winge, P., Brembu, T., Kristensen, R. & Bones, A. M. Genetic structure and evolution of RAC-GTPases in Arabdopsis thaliana. Genetics 156, 1959–1971 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, L. P., Simon, E. J., Trotochaud, A. E. & Clark, S. E. POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci. Development 127, 1661– 1670 (2000).

    CAS  PubMed  Google Scholar 

  22. Laux, T., Mayer, K. F. X., Berger, J. & Jurgens, G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87–96 (1996).

    CAS  PubMed  Google Scholar 

  23. Mayer, K. L. et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805–815 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Schoof, H. et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regualtory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635– 644 (2000).A superlative demonstration that the CLV loci regulate WUS gene expression, and that WUS is sufficient to establish stem-cell identity.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing hedgehog. Cell 87, 553– 563 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Green, P. B. Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am. J. Bot. 86, 1059– 1076 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Reinhardt, D., Mandel, T. & Kuhlemeier, C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507 –518 (2000).A creative look at the role of auxin in organ formation, revealing a uniform compentency for organ formation among cells on the periphery of the mersitem.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Running, M. P. & Meyerowitz, E. M. Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122 , 1261–1269 (1996). The Arabidopsis PAN gene is the only gene so far that specifically affects the phyllotaxy of organ initiation. This paper is a careful phenotypic and genetic analysis of pan mutants.

    CAS  PubMed  Google Scholar 

  29. Barton, M. K. & Poethig, R. S. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and shoot meristemless mutant. Development 119, 823–831 (1993).

    Google Scholar 

  30. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. & Tasaka, M. Genes involved in organ separation in Arabidopsis — an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841–857 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Long, J. A. & Barton, M. K. The development of apical embryonic pattern in Arabidopsis. Development 125, 3027–3035 (1998). A carefully done analysis of the sequential establishment of cell fates and meristem identity in the apical domain of the Arabidopsis embryo.

    CAS  PubMed  Google Scholar 

  32. Long, J. & Barton, M. K. Initiation of axillary and floral meristems in Arabidopsis. Dev. Biol. 218, 341–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Clark, S. E., Jacobsen, S. E., Levin, J. & Meyerowitz, E. M. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122, 1567–1575 (1996).

    CAS  PubMed  Google Scholar 

  34. Endrizzi, K., Moussain, B., Haecker, A., Levin, J. Z. & Laux, T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J. 10, 967–979 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Waites, R., Selvadurai, H. R., Oliver, I. R. & Hudson, A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789 ( 1998).In this groundbreaking paper, the PHAN gene was shown to regulate organ polarity in snapdragon. PHAN orthlogues were later isolated from many species, including maize and Arabidopsis , and shown to retain conserved developmental functions.

    Article  CAS  PubMed  Google Scholar 

  36. Tsiantis, M., Schneeberger, R., Golz, J. F., Freeling, M. & Langdale, J. A. The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284, 154–156 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  37. Byrne, M. E. et al. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967–971 (2000).An important analysis showing both the role of AS1 in leaf development, and the link between STM function and differentiation.

    Article  CAS  PubMed  Google Scholar 

  38. Ori, N., Eshed, Y., Chuck, G., Bowman, J. L. & Hake, S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523–5532 (2000).

    CAS  PubMed  Google Scholar 

  39. Kerstetter, R. A., Laudencia-Chingcuanco, D., Smith, L. G. & Hake, S. Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124, 3045–3054 (1997).

    CAS  PubMed  Google Scholar 

  40. Bowman, J. L. & Smyth, D. R. CRABS CLAW, a gene that regualtes carpel and nectary development in Arabidopsis, encodes a novel protein with zinc fingers and helix-loop-helix domains. Development 126, 2387–2396 (1999).

    CAS  PubMed  Google Scholar 

  41. Siegfried, K. R. et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128 (1999). An excellent look at several key genes involved in specifying organ polarity in Arabidopsis.

    CAS  PubMed  Google Scholar 

  42. Villanueva, J. M. et al. INNER NO OUTER regulates abaxial–adaxial patterning in Arabidopsis ovules. Genes Dev. 13, 3160–3169 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ostuga, D., DeGuzman, B., Prigge, M., Drews, G. N. & Clark, S. E. REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25, 223– 236 (2001).

    Article  Google Scholar 

  44. Moussian, B., Schoof, H., Haecker, A., Jürgens, G. & Laux, T. Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis. EMBO J. 17, 1799–1809 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469– 481 (1999).

    CAS  PubMed  Google Scholar 

  46. Fagard, M., Bouter, S., Morel, J. B., Bellini, C. & Vaucheret, H. AGO1, QDE-2 and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc. Natl Acad. Sci. USA 97, 11650–11654 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for bidentate ribonulcease in the initiation step of RNA interference . Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935–2942 (1998).

    CAS  PubMed  Google Scholar 

  49. Luo, D. et al. Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367–376 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  50. He, Z. et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288, 2360– 2363 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Schopfer, C. R., Nasrallah, M. E. & Nasrallah, J. B. The male determinant of self-incompatibility in Brassica . Science 286, 1697–1700 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Takasaki, T. et al. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature 403, 913– 916 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Giranton, J. L., Dumas, C., Cock, J. M. & Gaude, T. The integral membrane S-locus receptor kinase of Brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in Planta. Proc. Natl Acad. Sci. USA 0, 3759– 3764 (2000).

    Article  CAS  Google Scholar 

  54. Leyser, H. M. O. & Furner, I. J. Characterization of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116, 397–403 (1992).

    Google Scholar 

  55. Callos, J. D. et al. The FOREVER YOUNG gene encodes an oxidoreductase required for proper development of the Arabidopsis vegetative shoot apex. Plant J. 6, 835–847 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  56. Laufs, P., Dockx, J., Kronenberger, J. & Traas, J. MGOUN1 and MGOUN2-2 genes required for primordium initiation at the shoot apical and floral meristems in Arabidopsis thaliana. Development 125, 1253–1260 (1998).

    CAS  PubMed  Google Scholar 

  57. Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. & Meyerowitz, E. M. LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843–859 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Bowman, J. L., Alvarez, J., Weigel, D., Meyerowitz, E. M. & Smyth, D. R. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119, 721–743 (1993).

    CAS  Google Scholar 

  59. Shannon, S. & Meeks-Wagner, D. R. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5, 639–655 ( 1993).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shannon, S. & Meeks-Wagner, D. R. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3, 877–892 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Alvarez, J., Guli, C. L., Yu, X.-H. & Smyth, D. R. terminal flower : a gene affecting inflorescence development in Arabidopsis thaliana . Plant J. 2, 103–116 (1992).

    Article  Google Scholar 

  62. Jinn, T.-S., Stone, J. M. & Walker, J. C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 14, 108–117 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Torii, K. U. et al. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735–746 ( 1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stein, J. C., Howlett, B., Boyes, D. C., Nasrallah, M. E. & Nasrallah, J. B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc. Natl Acad. Sci. USA 88 , 8816–8820 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mu, J.-H., Lee, H.-S. & Kao, T.-H. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell 6, 709–721 ( 1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in the author's lab on meristem development is supported by grants from the NSF Developmental Mechanisms programme and the DOE Energy Biosciences programme. The author thanks John Bowman for providing the photograph used in FIG. 6.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

CLV1

CLV2

CLV3

thyroid-stimulating hormone receptor

luteinizing hormone receptor

gonadotropin hormone receptor

RLK5

Rho/Rac

POL

WUS

PAN

STM

AS1

CRC

FIL

REV

ZLL

AGO1

PHB

LEAFY

APETALAI 1

TFL

ERECTA

FURTHER INFORMATION

Clark lab home page

ENCYCLOPEDIA OF LIFE SCIENCES

Arabidopsis thaliana as an experimental organism

Arabidopsis: Flower development and patterning

Positional information in plant development

Glossary

MERISTEMS

Locations on a plant where stem cells are maintained and organogenesis occurs. Root meristems, shoot meristems and flower meristems fit this description.

ORGAN PRIMORDIA

An organ (for example, a leaf, flower or petal) at an early stage of development, immediately after its initiation.

ANGIOSPERMS

Most extant plants are angiosperms, or flowering plants. Non-angiosperms include gymnosperms (for example, pine and cycads), ferns and mosses.

ANTICLINAL

During anticlinal cell divisions, the new cell wall forms perpendicular to the layer of cells. This maintains cells in a single layer.

PERICLINAL

In periclinal cell divisions, the new cell wall forms parallel to the cell layer, effectively thickening that cell layer.

PHYLLOTAXY

The pattern of organ initiation by a shoot or flower meristem.

EPISTATIC

Mutations that are epistatic mask the phenotype of other mutations.

MOSAIC ORGANS

Organs that have cell types characterisitic of two or more organs.

FUSED ORGANS

Organs fused together at early stages of development, usually at the lateral edges.

ABSCISSION

The process by which dead parts of a plant break off naturally (for example, leaves).

MYB TRANSCRIPTION FACTOR

A type of transcription factor first identified in animals. The MYB gene family is greatly expanded in plants, and the proteins that these encode have been shown to control many developmental processes.

ZYGOMORPHIC FLOWERS

Flowers that are asymmetric, and in which the development of specific organs varies depending on the polarities of the flowers. Snapdragon flowers are zygomorphic, whereas roses are not.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, S. Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2, 276–284 (2001). https://doi.org/10.1038/35067079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35067079

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing