Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolution of nanoporosity in dealloying

Abstract

Dealloying is a common corrosion process during which an alloy is ‘parted’ by the selective dissolution of the most electrochemically active of its elements. This process results in the formation of a nanoporous sponge composed almost entirely of the more noble alloy constituents1. Although considerable attention has been devoted to the morphological aspects of the dealloying process, its underlying physical mechanism has remained unclear2. Here we propose a continuum model that is fully consistent with experiments and theoretical simulations of alloy dissolution, and demonstrate that nanoporosity in metals is due to an intrinsic dynamical pattern formation process. That is, pores form because the more noble atoms are chemically driven to aggregate into two-dimensional clusters by a phase separation process (spinodal decomposition) at the solid–electrolyte interface, and the surface area continuously increases owing to etching. Together, these processes evolve porosity with a characteristic length scale predicted by our continuum model. We expect that chemically tailored nanoporous gold made by dealloying Ag-Au should be suitable for sensor applications, particularly in a biomaterials context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scanning electron micrographs of nanoporous gold made by selective dissolution of silver from Ag-Au alloys immersed in nitric acid under free corrosion conditions.
Figure 2: Simulated nanoporous gold.
Figure 3: Comparison of experimental and simulated current–potential behaviour.
Figure 4: Simulated evolution of an artificial pit in Au10%Ag90% (atom%), φ = 1.8 eV.

Similar content being viewed by others

References

  1. Pickering, H. W. Characteristic features of alloy polarization curves. Corros. Sci. 23, 1107–1120 (1983).

    Article  CAS  Google Scholar 

  2. Forty, A. J. Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597–598 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Masing, G. Zur Theorie der Resistenzgrenzen in Mischkristallen. Z. Anorg. Allg. Chem. 118, 293–308 (1921).

    Article  CAS  Google Scholar 

  4. Lechtman, H. Pre-Columbian surface metallurgy. Sci. Am. 250, 56–63 (1984).

    Article  CAS  Google Scholar 

  5. Williams, D. E., Newman, R. C., Song, Q. & Kelly, R. G. Passivity breakdown and pitting corrosion of binary alloys. Nature 350, 216–219 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Newman, R. C. & Sieradzki, K. Metallic Corrosion. Science 263, 1708–1709 (1994).

    Article  ADS  CAS  Google Scholar 

  7. Li, R. & Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168–1171 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Corcoran, S. in Critical Factors in Localized Corrosion III (eds Kelly, R. G., Frankel, G. S., Natishan, P. M. & Newman, R. C.) 500–507 (Electrochemical Society, Pennington, New Jersey, 2000).

    Google Scholar 

  9. Pickering, H. W. & Wagner, C. Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc. 114, 698–706 (1967).

    Article  CAS  Google Scholar 

  10. Sieradzki, K., Corderman, R. R., Shukla, K. & Newman, R. C. Computer simulations of corrosion: selective dissolution of binary alloys. Phil. Mag. A 59, 713–746 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Sieradzki, K. Curvature effects in alloy dissolution. J. Electrochem. Soc. 140, 2868–2872 (1993).

    Article  CAS  Google Scholar 

  12. Wagner, C. Contribution to the theory of electropolishing. J. Electrochem. Soc. 101, 225–228 (1953).

    Article  Google Scholar 

  13. Erlebacher, J. in Dynamics of Crystal Surfaces and Interfaces (eds Duxbury, P. & Pence, T.) 24–28 (Plenum, New York, 1997).

    Google Scholar 

  14. Wagner, K., Brankovic, S. R., Dmitrov, N. & Sieradzki, K. Dealloying below the critical potential. J. Electrochem. Soc. 144, 3545–3555 (1997).

    Article  CAS  Google Scholar 

  15. Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958).

    Article  ADS  CAS  Google Scholar 

  16. Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1958).

    Article  ADS  Google Scholar 

  17. Hilliard, J. E. in Solidification 497–560 (American Society for Metals, Metals Park, Ohio, 1971).

    Google Scholar 

  18. Ben-Jacob, E., Goldenfeld, N., Langer, J. S. & Schon, G. Dynamics of interfacial pattern formation. Phys. Rev. Lett. 51, 1930–1932 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Mullins, W. W. Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957).

    Article  ADS  CAS  Google Scholar 

  20. Kessler, D. A., Koplik, J. & Levine, H. Geometrical models of interface evolution. II. Numerical simulation Phys. Rev. A 30, 3161–3174 (1984).

    Article  ADS  CAS  Google Scholar 

  21. Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. Removing the stiffness from interfacial flow with surface tension. J. Comp. Phys. 114, 312–338 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  22. Barabasi, A. -L. & Stanley, H. E. Fractal Concepts in Surface Growth (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  23. Haasen, P. Physical Metallurgy, (Cambridge Univ. Press, 1986).

    Google Scholar 

  24. Forty, A. J. in Sir Charles Frank: An 80th Birthday Tribute (ed. Chamber, R .G.) 164–187 (Adam Hilger, Bristol, 1991).

    Google Scholar 

  25. Tulimieri, D. J., Yoon, J. & Chan, M. H. W. Ordering of helium mixtures in porous gold. Phys. Rev. Lett. 82, 121–124 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Basic Energy Sciences. The research of A.K. also benefited from computer time allocation at NU-ASCC. K.S. thanks the AFOSR for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonah Erlebacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlebacher, J., Aziz, M., Karma, A. et al. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001). https://doi.org/10.1038/35068529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068529

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing