Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Odour-plume dynamics influence the brain's olfactory code

Abstract

The neural computations used to represent olfactory information in the brain have long been investigated1,2,3. Recent studies in the insect antennal lobe suggest that precise temporal and/or spatial patterns of activity underlie the recognition and discrimination of different odours3,4,5,6,7, and that these patterns may be strengthened by associative learning8,9. It remains unknown, however, whether these activity patterns persist when odour intensity varies rapidly and unpredictably, as often occurs in nature10,11. Here we show that with naturally intermittent odour stimulation, spike patterns recorded from moth antennal-lobe output neurons varied predictably with the fine-scale temporal dynamics and intensity of the odour. These data support the hypothesis that olfactory circuits compensate for contextual variations in the stimulus pattern with high temporal precision. The timing of output neuron activity is constantly modulated to reflect ongoing changes in stimulus intensity and dynamics that occur on a millisecond timescale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping the dynamics of a natural odour plume.
Figure 2: Measurement of plume dynamics in flight.
Figure 3: Temporal patterns of spike discharges in olfactory projection neurons (PNs) are strongly dependent on the stimulus dynamics of a wind-borne pheromone plume.
Figure 4: Temporal analysis of stimulus-evoked PN activity reveals that odour identity is not encoded in the temporal structure of these responses.

Similar content being viewed by others

References

  1. Adrian, E. D. Olfactory reactions in the brain of the hedgehog. J. Physiol. 100, 459–473 (1942).

    Article  CAS  Google Scholar 

  2. Gelperin, A. & Tank, D. W. Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345, 437–440 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Laurent, G., Wehr, M. & Davidowitz, H. Temporal representations of odors in an olfactory network. J. Neurosci. 16, 3837–3847 (1996).

    Article  CAS  Google Scholar 

  4. Laurent, G. & Davidowitz, H. Encoding of olfactory information with oscillating neural assemblies. Science 265, 1872–1875 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Wehr, M. & Laurent, G. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384, 162–166 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Joerges, J., Küttner, A., Galizia, G. & Menzel, R. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285–288 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Heinbockel, T., Kloppenburg, P. & Hildebrand, J. G. Pheromone-evoked potentials and oscillations in the antennal lobes of the sphinx moth Manduca sexta. J. Comp. Physiol. A 182, 703–714 (1998).

    Article  CAS  Google Scholar 

  8. Faber, T., Joerges, J. & Menzel, R. Associative learning modifies neural representations of odours in the insect brain. Nature Neurosci. 2, 74–78 (1999).

    Article  CAS  Google Scholar 

  9. Stopfer, M. & Laurent, G. Short-term memory in olfactory network dynamics. Nature 402, 664–668 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Murlis, J. in Insect Pheromone Research: New Directions (eds Cardé, R. T. & Minks, A. K.) 221–231 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  11. Christensen, T. A., Heinbockel, T. & Hildebrand, J. G. Olfactory information processing in the brain: encoding chemical and temporal features of odors. J. Neurobiol. 30, 82–91 (1996).

    Article  CAS  Google Scholar 

  12. Hildebrand, J. G. Olfactory control of behavior in moths: central processing of odor information and the functional significance of olfactory glomeruli. J. Comp. Physiol. A 178, 5–19 (1996).

    Article  CAS  Google Scholar 

  13. Hansson, B. S. & Christensen, T. A. in Insect Olfaction (ed. Hansson, B. S.) 125–161 (Springer, Berlin, 1999).

    Google Scholar 

  14. Christensen, T. A. & White, J. E. in The Neurobiology of Taste and Smell Vol. 2 (eds Finger, T. E., Silver, W. L. & Restrepo, D.) 201–232 (Wiley, New York, 2001).

    Google Scholar 

  15. Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl Acad. Sci. USA 91, 5756–5760 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Vickers, N. J., Christensen, T. A. & Hildebrand, J. G. Combinatorial odor discrimination in the brain: attractive and antagonist odor blends are represented in distinct combinations of uniquely identifiable glomeruli. J. Comp. Neurol. 400, 35–56 (1998).

    Article  CAS  Google Scholar 

  17. Christensen, T. A., Pawlowski, V. M., Lei, H. & Hildebrand, J. G. Multi-unit recordings reveal context-dependent modulation of synchrony in odor-specific neural ensembles. Nature Neurosci. 3, 927–931 (2000).

    Article  CAS  Google Scholar 

  18. Lei, H., Christensen, T. A. & Hildebrand, J. G. Odor-evoked synchronization of olfactory networks: comparison of output neurons innervating the same and different glomeruli in the antennal lobe of Manduca sexta. Soc. Neurosci. Abstr. 26, 1208 (2000).

    Google Scholar 

  19. Baker, T. C. & Vickers, N. J. in Insect Pheromone Research: New Directions (eds Cardé, R. T. & Minks, A. K.) 248–264 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  20. King, J. R., Christensen, T. A. & Hildebrand, J. G. Response characteristics of an identified, sexually dimorphic olfactory glomerulus. J. Neurosci. 20, 2391–2399 (2000).

    Article  CAS  Google Scholar 

  21. Buračas, G. T. & Albright, T. D. Gauging sensory representations in the brain. Trends Neurosci. 22, 303–309 (1999).

    Article  Google Scholar 

  22. Christensen, T. A., Waldrop, B. R. & Hildebrand, J. G. Multitasking in the olfactory system: context dependent responses to odors reveal dual GABA-regulated coding mechanisms in single olfactory projection neurons. J. Neurosci. 18, 5999–6008 (1998).

    Article  CAS  Google Scholar 

  23. Christensen, T. A., Mustaparta, H. & Hildebrand, J. G. Chemical communication in heliothine moths. VI. Parallel pathways for information processing in the macroglomerular complex of the male tobacco budworm moth Heliothis virescens. J. Comp. Physiol. A 177, 545–557 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Hannaford and M. Willis for help in constructing the small wind tunnel. This work was supported by United States Department of Agriculture (National Research Initiative), National Institutes of Health (National Institute for Deafness and Other Communication Disorders), and Defense Advanced Research Projects Agency (Controlled Biological Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil J. Vickers.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vickers, N., Christensen, T., Baker, T. et al. Odour-plume dynamics influence the brain's olfactory code. Nature 410, 466–470 (2001). https://doi.org/10.1038/35068559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068559

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing