Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death

Abstract

Programmed cell death is a fundamental requirement for embryogenesis, organ metamorphosis and tissue homeostasis. In mammals, release of mitochondrial cytochrome c leads to the cytosolic assembly of the apoptosome—a caspase activation complex involving Apaf1 and caspase-9 that induces hallmarks of apoptosis. There are, however, mitochondrially regulated cell death pathways that are independent of Apaf1/caspase-9. We have previously cloned a molecule associated with programmed cell death called apoptosis-inducing factor (AIF). Like cytochrome c, AIF is localized to mitochondria and released in response to death stimuli. Here we show that genetic inactivation of AIF renders embryonic stem cells resistant to cell death after serum deprivation. Moreover, AIF is essential for programmed cell death during cavitation of embryoid bodies—the very first wave of cell death indispensable for mouse morphogenesis. AIF-dependent cell death displays structural features of apoptosis, and can be genetically uncoupled from Apaf1 and caspase-9 expression. Our data provide genetic evidence for a caspase-independent pathway of programmed cell death that controls early morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AIF is essential for cell death induced by serum withdrawal.
Figure 2: AIF is essential for embryoid body cavitation.
Figure 3: AIF is essential for PCD during early morphogenesis.
Figure 4: The effect of AIF is autonomous to inner cells.
Figure 5: Translocation of AIF from the mitochondria to the nucleus.
Figure 6: Morphological features of AIF-regulated PCD in EBs.

Similar content being viewed by others

References

  1. Jacobson, M. D., Weil, M. & Raff, M. C. Programmed cell death in animal development. Cell 88, 347–354 (1997).

    Article  CAS  Google Scholar 

  2. Vaux, D. L. & Korsmeyer, S. J. Cell death in development. Cell 96, 245–254 (1999).

    Article  CAS  Google Scholar 

  3. Green, D. R. & Reed, J. C. Mitochondria and apoptosis. Science 281, 1309–1312 (1998).

    Article  CAS  Google Scholar 

  4. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  Google Scholar 

  5. Ellis, H. M. & Horvitz, H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell 44, 817–829 (1986).

    Article  CAS  Google Scholar 

  6. Hengartner, M. O. & Horvitz, H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76, 665–676 (1994).

    Article  CAS  Google Scholar 

  7. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413 (1997).

    Article  CAS  Google Scholar 

  8. Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M. & Horvitz, H. R. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  Google Scholar 

  9. Newmeyer, D. D., Farschon, D. M. & Reed, J. C. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353–364 (1994).

    Article  CAS  Google Scholar 

  10. Kroemer, G. & Reed, J. C. Mitochondrial control of cell death. Nature Med. 6, 513–519 (2000).

    Article  CAS  Google Scholar 

  11. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    Article  CAS  Google Scholar 

  12. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  Google Scholar 

  13. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  Google Scholar 

  14. Li, P. et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997).

    Article  CAS  Google Scholar 

  15. Zou, H., Li, Y., Liu, X. & Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549–11556 (1999).

    Article  CAS  Google Scholar 

  16. Thompson, C. B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750 (1998).

    Article  CAS  Google Scholar 

  18. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  Google Scholar 

  19. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339–352 (1998).

    Article  CAS  Google Scholar 

  20. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325–337 (1998).

    Article  CAS  Google Scholar 

  21. Li, K. et al. Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101, 389–399 (2000).

    Article  CAS  Google Scholar 

  22. Amarante-Mendes, G. P. et al. Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Differ. 5, 298–306 (1998).

    Article  CAS  Google Scholar 

  23. Haraguchi, M. et al. Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J. Exp. Med. 191, 1709–1720 (2000).

    Article  CAS  Google Scholar 

  24. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Daugas, E. et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J. 14, 729–739 (2000).

    Article  CAS  Google Scholar 

  26. Ferri, K. F. et al. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex. Role of mitochondria and caspases. J. Exp. Med. 192, 1081–1092 (2000).

    Article  CAS  Google Scholar 

  27. Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981).

    Article  ADS  CAS  Google Scholar 

  29. Bautch, V. L. et al. Blood island formation in attached cultures of murine embryonic stem cells. Dev. Dyn. 205, 1–12 (1996).

    Article  CAS  Google Scholar 

  30. Coucouvanis, E. & Martin, G. R. Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83, 279–287 (1995).

    Article  CAS  Google Scholar 

  31. Robertson, E. J. Embryo-Derived Stem Cell Lines (IRL, Oxford, 1987).

    Google Scholar 

  32. Coucouvanis, E. & Martin, G. R. BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 126, 535–546 (1999).

    CAS  PubMed  Google Scholar 

  33. Leahy, A., Xiong, J. W., Kuhnert, F. & Stuhlmann, H. Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J. Exp. Zool. 284, 67–81 (1999).

    Article  CAS  Google Scholar 

  34. McCarthy, N. J., Whyte, M. K., Gilbert, C. S. & Evan, G. I. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 136, 215–227 (1997).

    Article  CAS  Google Scholar 

  35. Lorenzo, H. K., Susin, S. A., Penninger, J. & Kroemer, G. Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6, 516–524 (1999).

    Article  CAS  Google Scholar 

  36. Schmitt, R. M., Bruyns, E. & Snodgrass, H. R. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5, 728–740 (1991).

    Article  CAS  Google Scholar 

  37. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  ADS  CAS  Google Scholar 

  38. Cho, S. K. et al. Functional characterization of B lymphocytes generated in vitro from embryonic stem cells. Proc. Natl Acad. Sci. USA 96, 9797–9802 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Saunders for scientific editing; A. Oliveira-dos-Santos, K. Bachmaier, T. Wada, V. Stambolic, L. Zhang, M. Crackower, C. Krawzcyk, I. Kozieradzki, Q. Liu, J. Irie-Sasaki, M. Nghiem, R. Sarao, E. Griffith, L. Barra and A. Manoukian for comments; D. Métivier and B. Calvieri for technical assistance; and J. Rossant and A. Bernstein for lacZ-expressing ES cells. N.J. and J.M.P. are supported by the Canadian Institute of Health Research (CIHR), Amgen, and the National Cancer Institute of Canada. W.L.S. is supported by the Karyn Glick Memorial Special Fellowship and CIHR. E.D. is supported by Assistance Publique-Hôpitaux de Paris and CANAM. G.K. is supported by grants from Ligue Nationale Contre le Cancer, European Commission and Agence Nationale pour la Recherche Sur le SIDA. J.M.P. holds a Canadian Research Chair in Cell Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef M. Penninger.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joza, N., Susin, S., Daugas, E. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001). https://doi.org/10.1038/35069004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35069004

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing